Stability analysis of anchored slopes based on a peak shear-strength criterion of rock joints

A new three-dimensional shear-strength criterion (3DSSC) considering the three-dimensional (3D) roughness of rock joints and the internal friction angle of rock masses is discussed. Two methods for transforming the parameters of the 3DSSC into the linear Mohr–Coulomb failure criterion parameters are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2020-05, Vol.79 (10), Article 215
Hauptverfasser: Ban, Liren, Du, Weisheng, Qi, Chengzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Environmental earth sciences
container_volume 79
creator Ban, Liren
Du, Weisheng
Qi, Chengzhi
description A new three-dimensional shear-strength criterion (3DSSC) considering the three-dimensional (3D) roughness of rock joints and the internal friction angle of rock masses is discussed. Two methods for transforming the parameters of the 3DSSC into the linear Mohr–Coulomb failure criterion parameters are proposed. The calculation method of the anti-sliding safety coefficient of a rock slope controlled by a single anchored rock joint is derived, and anchoring parameter analysis is carried out. Compared with the equivalent linear fitting method and tangent equivalent method for obtaining the Mohr–Coulomb shear-strength parameters, the 3DSSC can be directly applied to calculate the rock slope stability controlled by a single rock joint. The change in the characteristics of the anti-sliding safety coefficient of the slope with the changes in the 3D roughness parameters, shear rate, and internal friction angle are discussed. The sensitivity of these factors to the slope stability is analyzed. It is suggested that for rock slopes with high roughness and a small internal friction angle, the weakening effect of the anchoring force angle on the anti-sliding stability of the slope should be taken into account.
doi_str_mv 10.1007/s12665-020-08961-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2400255115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400255115</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-f927cf31e2064578e36e5a19514bfc100bb73d09d9d803ca5921dd472b0d65983</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVNAf4GSJs2Ftx058RBUvqRIH4IgsJ3HatCUOXvfQv8cQBDf2srPamZFmCLngcMUBymvkQmvFQACDymjO4IjMeKU108KY419cwSmZI24gj-TSgJ6Rt-fk6n7XpwN1g9sdsEcauoybdYi-pbgLo0daO8xHGKijo3dbimvvIsMU_bBKa9rEPvnY53_WxtBs6Sb0Q8JzctK5Hfr5zz4jr3e3L4sHtny6f1zcLJmThUisM6JsOsm9AF2osvJSe-W4UbyouyZnrOtStmBa01YgG6eM4G1blKKGVitTyTNyOfmOMXzsPSa7CfuY86AVBYBQinOVWWJiNTEgRt_ZMfbvLh4sB_vVpJ2atLlJ-92khSySkwgzeVj5-Gf9j-oTyxh14w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400255115</pqid></control><display><type>article</type><title>Stability analysis of anchored slopes based on a peak shear-strength criterion of rock joints</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ban, Liren ; Du, Weisheng ; Qi, Chengzhi</creator><creatorcontrib>Ban, Liren ; Du, Weisheng ; Qi, Chengzhi</creatorcontrib><description>A new three-dimensional shear-strength criterion (3DSSC) considering the three-dimensional (3D) roughness of rock joints and the internal friction angle of rock masses is discussed. Two methods for transforming the parameters of the 3DSSC into the linear Mohr–Coulomb failure criterion parameters are proposed. The calculation method of the anti-sliding safety coefficient of a rock slope controlled by a single anchored rock joint is derived, and anchoring parameter analysis is carried out. Compared with the equivalent linear fitting method and tangent equivalent method for obtaining the Mohr–Coulomb shear-strength parameters, the 3DSSC can be directly applied to calculate the rock slope stability controlled by a single rock joint. The change in the characteristics of the anti-sliding safety coefficient of the slope with the changes in the 3D roughness parameters, shear rate, and internal friction angle are discussed. The sensitivity of these factors to the slope stability is analyzed. It is suggested that for rock slopes with high roughness and a small internal friction angle, the weakening effect of the anchoring force angle on the anti-sliding stability of the slope should be taken into account.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-020-08961-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anchoring ; Biogeosciences ; Control stability ; Criteria ; Earth and Environmental Science ; Earth Sciences ; Environmental Science and Engineering ; Equivalence ; Friction ; Geochemistry ; Geology ; Hydrology/Water Resources ; Internal friction ; Joints (timber) ; Mathematical analysis ; Mohr-Coulomb theory ; Original Article ; Parameter sensitivity ; Parameters ; Rock masses ; Rocks ; Roughness ; Roughness parameters ; Safety ; Shear ; Shear rate ; Sliding ; Slope stability ; Slumping ; Stability analysis ; Terrestrial Pollution</subject><ispartof>Environmental earth sciences, 2020-05, Vol.79 (10), Article 215</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-f927cf31e2064578e36e5a19514bfc100bb73d09d9d803ca5921dd472b0d65983</citedby><cites>FETCH-LOGICAL-a342t-f927cf31e2064578e36e5a19514bfc100bb73d09d9d803ca5921dd472b0d65983</cites><orcidid>0000-0003-1029-6602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-020-08961-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-020-08961-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ban, Liren</creatorcontrib><creatorcontrib>Du, Weisheng</creatorcontrib><creatorcontrib>Qi, Chengzhi</creatorcontrib><title>Stability analysis of anchored slopes based on a peak shear-strength criterion of rock joints</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>A new three-dimensional shear-strength criterion (3DSSC) considering the three-dimensional (3D) roughness of rock joints and the internal friction angle of rock masses is discussed. Two methods for transforming the parameters of the 3DSSC into the linear Mohr–Coulomb failure criterion parameters are proposed. The calculation method of the anti-sliding safety coefficient of a rock slope controlled by a single anchored rock joint is derived, and anchoring parameter analysis is carried out. Compared with the equivalent linear fitting method and tangent equivalent method for obtaining the Mohr–Coulomb shear-strength parameters, the 3DSSC can be directly applied to calculate the rock slope stability controlled by a single rock joint. The change in the characteristics of the anti-sliding safety coefficient of the slope with the changes in the 3D roughness parameters, shear rate, and internal friction angle are discussed. The sensitivity of these factors to the slope stability is analyzed. It is suggested that for rock slopes with high roughness and a small internal friction angle, the weakening effect of the anchoring force angle on the anti-sliding stability of the slope should be taken into account.</description><subject>Anchoring</subject><subject>Biogeosciences</subject><subject>Control stability</subject><subject>Criteria</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Science and Engineering</subject><subject>Equivalence</subject><subject>Friction</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Hydrology/Water Resources</subject><subject>Internal friction</subject><subject>Joints (timber)</subject><subject>Mathematical analysis</subject><subject>Mohr-Coulomb theory</subject><subject>Original Article</subject><subject>Parameter sensitivity</subject><subject>Parameters</subject><subject>Rock masses</subject><subject>Rocks</subject><subject>Roughness</subject><subject>Roughness parameters</subject><subject>Safety</subject><subject>Shear</subject><subject>Shear rate</subject><subject>Sliding</subject><subject>Slope stability</subject><subject>Slumping</subject><subject>Stability analysis</subject><subject>Terrestrial Pollution</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtOwzAQtBBIVNAf4GSJs2Ftx058RBUvqRIH4IgsJ3HatCUOXvfQv8cQBDf2srPamZFmCLngcMUBymvkQmvFQACDymjO4IjMeKU108KY419cwSmZI24gj-TSgJ6Rt-fk6n7XpwN1g9sdsEcauoybdYi-pbgLo0daO8xHGKijo3dbimvvIsMU_bBKa9rEPvnY53_WxtBs6Sb0Q8JzctK5Hfr5zz4jr3e3L4sHtny6f1zcLJmThUisM6JsOsm9AF2osvJSe-W4UbyouyZnrOtStmBa01YgG6eM4G1blKKGVitTyTNyOfmOMXzsPSa7CfuY86AVBYBQinOVWWJiNTEgRt_ZMfbvLh4sB_vVpJ2atLlJ-92khSySkwgzeVj5-Gf9j-oTyxh14w</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ban, Liren</creator><creator>Du, Weisheng</creator><creator>Qi, Chengzhi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1029-6602</orcidid></search><sort><creationdate>20200501</creationdate><title>Stability analysis of anchored slopes based on a peak shear-strength criterion of rock joints</title><author>Ban, Liren ; Du, Weisheng ; Qi, Chengzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-f927cf31e2064578e36e5a19514bfc100bb73d09d9d803ca5921dd472b0d65983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anchoring</topic><topic>Biogeosciences</topic><topic>Control stability</topic><topic>Criteria</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Science and Engineering</topic><topic>Equivalence</topic><topic>Friction</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Hydrology/Water Resources</topic><topic>Internal friction</topic><topic>Joints (timber)</topic><topic>Mathematical analysis</topic><topic>Mohr-Coulomb theory</topic><topic>Original Article</topic><topic>Parameter sensitivity</topic><topic>Parameters</topic><topic>Rock masses</topic><topic>Rocks</topic><topic>Roughness</topic><topic>Roughness parameters</topic><topic>Safety</topic><topic>Shear</topic><topic>Shear rate</topic><topic>Sliding</topic><topic>Slope stability</topic><topic>Slumping</topic><topic>Stability analysis</topic><topic>Terrestrial Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ban, Liren</creatorcontrib><creatorcontrib>Du, Weisheng</creatorcontrib><creatorcontrib>Qi, Chengzhi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ban, Liren</au><au>Du, Weisheng</au><au>Qi, Chengzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of anchored slopes based on a peak shear-strength criterion of rock joints</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>79</volume><issue>10</issue><artnum>215</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>A new three-dimensional shear-strength criterion (3DSSC) considering the three-dimensional (3D) roughness of rock joints and the internal friction angle of rock masses is discussed. Two methods for transforming the parameters of the 3DSSC into the linear Mohr–Coulomb failure criterion parameters are proposed. The calculation method of the anti-sliding safety coefficient of a rock slope controlled by a single anchored rock joint is derived, and anchoring parameter analysis is carried out. Compared with the equivalent linear fitting method and tangent equivalent method for obtaining the Mohr–Coulomb shear-strength parameters, the 3DSSC can be directly applied to calculate the rock slope stability controlled by a single rock joint. The change in the characteristics of the anti-sliding safety coefficient of the slope with the changes in the 3D roughness parameters, shear rate, and internal friction angle are discussed. The sensitivity of these factors to the slope stability is analyzed. It is suggested that for rock slopes with high roughness and a small internal friction angle, the weakening effect of the anchoring force angle on the anti-sliding stability of the slope should be taken into account.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-020-08961-0</doi><orcidid>https://orcid.org/0000-0003-1029-6602</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1866-6280
ispartof Environmental earth sciences, 2020-05, Vol.79 (10), Article 215
issn 1866-6280
1866-6299
language eng
recordid cdi_proquest_journals_2400255115
source SpringerLink Journals - AutoHoldings
subjects Anchoring
Biogeosciences
Control stability
Criteria
Earth and Environmental Science
Earth Sciences
Environmental Science and Engineering
Equivalence
Friction
Geochemistry
Geology
Hydrology/Water Resources
Internal friction
Joints (timber)
Mathematical analysis
Mohr-Coulomb theory
Original Article
Parameter sensitivity
Parameters
Rock masses
Rocks
Roughness
Roughness parameters
Safety
Shear
Shear rate
Sliding
Slope stability
Slumping
Stability analysis
Terrestrial Pollution
title Stability analysis of anchored slopes based on a peak shear-strength criterion of rock joints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20anchored%20slopes%20based%20on%20a%20peak%20shear-strength%20criterion%20of%20rock%20joints&rft.jtitle=Environmental%20earth%20sciences&rft.au=Ban,%20Liren&rft.date=2020-05-01&rft.volume=79&rft.issue=10&rft.artnum=215&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-020-08961-0&rft_dat=%3Cproquest_cross%3E2400255115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400255115&rft_id=info:pmid/&rfr_iscdi=true