Stability analysis of anchored slopes based on a peak shear-strength criterion of rock joints
A new three-dimensional shear-strength criterion (3DSSC) considering the three-dimensional (3D) roughness of rock joints and the internal friction angle of rock masses is discussed. Two methods for transforming the parameters of the 3DSSC into the linear Mohr–Coulomb failure criterion parameters are...
Gespeichert in:
Veröffentlicht in: | Environmental earth sciences 2020-05, Vol.79 (10), Article 215 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Environmental earth sciences |
container_volume | 79 |
creator | Ban, Liren Du, Weisheng Qi, Chengzhi |
description | A new three-dimensional shear-strength criterion (3DSSC) considering the three-dimensional (3D) roughness of rock joints and the internal friction angle of rock masses is discussed. Two methods for transforming the parameters of the 3DSSC into the linear Mohr–Coulomb failure criterion parameters are proposed. The calculation method of the anti-sliding safety coefficient of a rock slope controlled by a single anchored rock joint is derived, and anchoring parameter analysis is carried out. Compared with the equivalent linear fitting method and tangent equivalent method for obtaining the Mohr–Coulomb shear-strength parameters, the 3DSSC can be directly applied to calculate the rock slope stability controlled by a single rock joint. The change in the characteristics of the anti-sliding safety coefficient of the slope with the changes in the 3D roughness parameters, shear rate, and internal friction angle are discussed. The sensitivity of these factors to the slope stability is analyzed. It is suggested that for rock slopes with high roughness and a small internal friction angle, the weakening effect of the anchoring force angle on the anti-sliding stability of the slope should be taken into account. |
doi_str_mv | 10.1007/s12665-020-08961-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2400255115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400255115</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-f927cf31e2064578e36e5a19514bfc100bb73d09d9d803ca5921dd472b0d65983</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVNAf4GSJs2Ftx058RBUvqRIH4IgsJ3HatCUOXvfQv8cQBDf2srPamZFmCLngcMUBymvkQmvFQACDymjO4IjMeKU108KY419cwSmZI24gj-TSgJ6Rt-fk6n7XpwN1g9sdsEcauoybdYi-pbgLo0daO8xHGKijo3dbimvvIsMU_bBKa9rEPvnY53_WxtBs6Sb0Q8JzctK5Hfr5zz4jr3e3L4sHtny6f1zcLJmThUisM6JsOsm9AF2osvJSe-W4UbyouyZnrOtStmBa01YgG6eM4G1blKKGVitTyTNyOfmOMXzsPSa7CfuY86AVBYBQinOVWWJiNTEgRt_ZMfbvLh4sB_vVpJ2atLlJ-92khSySkwgzeVj5-Gf9j-oTyxh14w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400255115</pqid></control><display><type>article</type><title>Stability analysis of anchored slopes based on a peak shear-strength criterion of rock joints</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ban, Liren ; Du, Weisheng ; Qi, Chengzhi</creator><creatorcontrib>Ban, Liren ; Du, Weisheng ; Qi, Chengzhi</creatorcontrib><description>A new three-dimensional shear-strength criterion (3DSSC) considering the three-dimensional (3D) roughness of rock joints and the internal friction angle of rock masses is discussed. Two methods for transforming the parameters of the 3DSSC into the linear Mohr–Coulomb failure criterion parameters are proposed. The calculation method of the anti-sliding safety coefficient of a rock slope controlled by a single anchored rock joint is derived, and anchoring parameter analysis is carried out. Compared with the equivalent linear fitting method and tangent equivalent method for obtaining the Mohr–Coulomb shear-strength parameters, the 3DSSC can be directly applied to calculate the rock slope stability controlled by a single rock joint. The change in the characteristics of the anti-sliding safety coefficient of the slope with the changes in the 3D roughness parameters, shear rate, and internal friction angle are discussed. The sensitivity of these factors to the slope stability is analyzed. It is suggested that for rock slopes with high roughness and a small internal friction angle, the weakening effect of the anchoring force angle on the anti-sliding stability of the slope should be taken into account.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-020-08961-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anchoring ; Biogeosciences ; Control stability ; Criteria ; Earth and Environmental Science ; Earth Sciences ; Environmental Science and Engineering ; Equivalence ; Friction ; Geochemistry ; Geology ; Hydrology/Water Resources ; Internal friction ; Joints (timber) ; Mathematical analysis ; Mohr-Coulomb theory ; Original Article ; Parameter sensitivity ; Parameters ; Rock masses ; Rocks ; Roughness ; Roughness parameters ; Safety ; Shear ; Shear rate ; Sliding ; Slope stability ; Slumping ; Stability analysis ; Terrestrial Pollution</subject><ispartof>Environmental earth sciences, 2020-05, Vol.79 (10), Article 215</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-f927cf31e2064578e36e5a19514bfc100bb73d09d9d803ca5921dd472b0d65983</citedby><cites>FETCH-LOGICAL-a342t-f927cf31e2064578e36e5a19514bfc100bb73d09d9d803ca5921dd472b0d65983</cites><orcidid>0000-0003-1029-6602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-020-08961-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-020-08961-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ban, Liren</creatorcontrib><creatorcontrib>Du, Weisheng</creatorcontrib><creatorcontrib>Qi, Chengzhi</creatorcontrib><title>Stability analysis of anchored slopes based on a peak shear-strength criterion of rock joints</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>A new three-dimensional shear-strength criterion (3DSSC) considering the three-dimensional (3D) roughness of rock joints and the internal friction angle of rock masses is discussed. Two methods for transforming the parameters of the 3DSSC into the linear Mohr–Coulomb failure criterion parameters are proposed. The calculation method of the anti-sliding safety coefficient of a rock slope controlled by a single anchored rock joint is derived, and anchoring parameter analysis is carried out. Compared with the equivalent linear fitting method and tangent equivalent method for obtaining the Mohr–Coulomb shear-strength parameters, the 3DSSC can be directly applied to calculate the rock slope stability controlled by a single rock joint. The change in the characteristics of the anti-sliding safety coefficient of the slope with the changes in the 3D roughness parameters, shear rate, and internal friction angle are discussed. The sensitivity of these factors to the slope stability is analyzed. It is suggested that for rock slopes with high roughness and a small internal friction angle, the weakening effect of the anchoring force angle on the anti-sliding stability of the slope should be taken into account.</description><subject>Anchoring</subject><subject>Biogeosciences</subject><subject>Control stability</subject><subject>Criteria</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Science and Engineering</subject><subject>Equivalence</subject><subject>Friction</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Hydrology/Water Resources</subject><subject>Internal friction</subject><subject>Joints (timber)</subject><subject>Mathematical analysis</subject><subject>Mohr-Coulomb theory</subject><subject>Original Article</subject><subject>Parameter sensitivity</subject><subject>Parameters</subject><subject>Rock masses</subject><subject>Rocks</subject><subject>Roughness</subject><subject>Roughness parameters</subject><subject>Safety</subject><subject>Shear</subject><subject>Shear rate</subject><subject>Sliding</subject><subject>Slope stability</subject><subject>Slumping</subject><subject>Stability analysis</subject><subject>Terrestrial Pollution</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtOwzAQtBBIVNAf4GSJs2Ftx058RBUvqRIH4IgsJ3HatCUOXvfQv8cQBDf2srPamZFmCLngcMUBymvkQmvFQACDymjO4IjMeKU108KY419cwSmZI24gj-TSgJ6Rt-fk6n7XpwN1g9sdsEcauoybdYi-pbgLo0daO8xHGKijo3dbimvvIsMU_bBKa9rEPvnY53_WxtBs6Sb0Q8JzctK5Hfr5zz4jr3e3L4sHtny6f1zcLJmThUisM6JsOsm9AF2osvJSe-W4UbyouyZnrOtStmBa01YgG6eM4G1blKKGVitTyTNyOfmOMXzsPSa7CfuY86AVBYBQinOVWWJiNTEgRt_ZMfbvLh4sB_vVpJ2atLlJ-92khSySkwgzeVj5-Gf9j-oTyxh14w</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ban, Liren</creator><creator>Du, Weisheng</creator><creator>Qi, Chengzhi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1029-6602</orcidid></search><sort><creationdate>20200501</creationdate><title>Stability analysis of anchored slopes based on a peak shear-strength criterion of rock joints</title><author>Ban, Liren ; Du, Weisheng ; Qi, Chengzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-f927cf31e2064578e36e5a19514bfc100bb73d09d9d803ca5921dd472b0d65983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anchoring</topic><topic>Biogeosciences</topic><topic>Control stability</topic><topic>Criteria</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Science and Engineering</topic><topic>Equivalence</topic><topic>Friction</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Hydrology/Water Resources</topic><topic>Internal friction</topic><topic>Joints (timber)</topic><topic>Mathematical analysis</topic><topic>Mohr-Coulomb theory</topic><topic>Original Article</topic><topic>Parameter sensitivity</topic><topic>Parameters</topic><topic>Rock masses</topic><topic>Rocks</topic><topic>Roughness</topic><topic>Roughness parameters</topic><topic>Safety</topic><topic>Shear</topic><topic>Shear rate</topic><topic>Sliding</topic><topic>Slope stability</topic><topic>Slumping</topic><topic>Stability analysis</topic><topic>Terrestrial Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ban, Liren</creatorcontrib><creatorcontrib>Du, Weisheng</creatorcontrib><creatorcontrib>Qi, Chengzhi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ban, Liren</au><au>Du, Weisheng</au><au>Qi, Chengzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of anchored slopes based on a peak shear-strength criterion of rock joints</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>79</volume><issue>10</issue><artnum>215</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>A new three-dimensional shear-strength criterion (3DSSC) considering the three-dimensional (3D) roughness of rock joints and the internal friction angle of rock masses is discussed. Two methods for transforming the parameters of the 3DSSC into the linear Mohr–Coulomb failure criterion parameters are proposed. The calculation method of the anti-sliding safety coefficient of a rock slope controlled by a single anchored rock joint is derived, and anchoring parameter analysis is carried out. Compared with the equivalent linear fitting method and tangent equivalent method for obtaining the Mohr–Coulomb shear-strength parameters, the 3DSSC can be directly applied to calculate the rock slope stability controlled by a single rock joint. The change in the characteristics of the anti-sliding safety coefficient of the slope with the changes in the 3D roughness parameters, shear rate, and internal friction angle are discussed. The sensitivity of these factors to the slope stability is analyzed. It is suggested that for rock slopes with high roughness and a small internal friction angle, the weakening effect of the anchoring force angle on the anti-sliding stability of the slope should be taken into account.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-020-08961-0</doi><orcidid>https://orcid.org/0000-0003-1029-6602</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-6280 |
ispartof | Environmental earth sciences, 2020-05, Vol.79 (10), Article 215 |
issn | 1866-6280 1866-6299 |
language | eng |
recordid | cdi_proquest_journals_2400255115 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anchoring Biogeosciences Control stability Criteria Earth and Environmental Science Earth Sciences Environmental Science and Engineering Equivalence Friction Geochemistry Geology Hydrology/Water Resources Internal friction Joints (timber) Mathematical analysis Mohr-Coulomb theory Original Article Parameter sensitivity Parameters Rock masses Rocks Roughness Roughness parameters Safety Shear Shear rate Sliding Slope stability Slumping Stability analysis Terrestrial Pollution |
title | Stability analysis of anchored slopes based on a peak shear-strength criterion of rock joints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20anchored%20slopes%20based%20on%20a%20peak%20shear-strength%20criterion%20of%20rock%20joints&rft.jtitle=Environmental%20earth%20sciences&rft.au=Ban,%20Liren&rft.date=2020-05-01&rft.volume=79&rft.issue=10&rft.artnum=215&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-020-08961-0&rft_dat=%3Cproquest_cross%3E2400255115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400255115&rft_id=info:pmid/&rfr_iscdi=true |