Voronovskaja Type Theorems and High-Order Convergence Neural Network Operators with Sigmoidal Functions
In the present paper, asymptotic expansion and Voronovskaja type theorem for the neural network operators have been proved. The above results are based on the computation of the algebraic truncated moments of the density functions generated by suitable sigmoidal functions, such as the logistic funct...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2020-06, Vol.17 (3), Article 77 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Mediterranean journal of mathematics |
container_volume | 17 |
creator | Costarelli, Danilo Vinti, Gianluca |
description | In the present paper, asymptotic expansion and Voronovskaja type theorem for the neural network operators have been proved. The above results are based on the computation of the algebraic truncated moments of the density functions generated by suitable sigmoidal functions, such as the logistic functions, sigmoidal functions generated by splines and other. Further, operators with high-order convergence are also studied by considering finite linear combination of the above neural network type operators and Voronovskaja type theorems are again proved. At the end of the paper, numerical results are provided. |
doi_str_mv | 10.1007/s00009-020-01513-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2400109140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400109140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1f58a8f465c9e4e03c56bdb9d672739fb226ad4e3b677fc4c74e26d6eb423c193</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74FadeoopSpIouKGwtx5mk6cMOdkLVvycQBDtmc2dx7ox0ELqm5JYSkt1F0o9KCCMJoSnlSXaCRlRKkqQiFae_u5Dn6CLGDSFMUc5GqHrzwTv_EbdmY_Dq2ABercEH2EdsXIHndbVOlqGAgKfefUCowFnAz9AFs-ujPfiwxcsGgml9iPhQt2v8Uld7Xxc9MOucbWvv4iU6K80uwtVPjtHr7GE1nSeL5ePT9H6RWE5Vm9AynZhJKWRqFQgg3KYyL3JVyIxlXJU5Y9IUAngus6y0wmYCmCwk5IJxSxUfo5vhbhP8ewex1RvfBde_1EwQQomigvQUGygbfIwBSt2Eem_CUVOiv4TqQajuhepvoTrrS3woxR52FYS_0_-0PgHhGXm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400109140</pqid></control><display><type>article</type><title>Voronovskaja Type Theorems and High-Order Convergence Neural Network Operators with Sigmoidal Functions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Costarelli, Danilo ; Vinti, Gianluca</creator><creatorcontrib>Costarelli, Danilo ; Vinti, Gianluca</creatorcontrib><description>In the present paper, asymptotic expansion and Voronovskaja type theorem for the neural network operators have been proved. The above results are based on the computation of the algebraic truncated moments of the density functions generated by suitable sigmoidal functions, such as the logistic functions, sigmoidal functions generated by splines and other. Further, operators with high-order convergence are also studied by considering finite linear combination of the above neural network type operators and Voronovskaja type theorems are again proved. At the end of the paper, numerical results are provided.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-020-01513-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Asymptotic series ; Convergence ; Goats ; Mathematics ; Mathematics and Statistics ; Neural networks ; Operators ; Spline functions ; Theorems</subject><ispartof>Mediterranean journal of mathematics, 2020-06, Vol.17 (3), Article 77</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1f58a8f465c9e4e03c56bdb9d672739fb226ad4e3b677fc4c74e26d6eb423c193</citedby><cites>FETCH-LOGICAL-c319t-1f58a8f465c9e4e03c56bdb9d672739fb226ad4e3b677fc4c74e26d6eb423c193</cites><orcidid>0000-0001-8834-8877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00009-020-01513-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00009-020-01513-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Costarelli, Danilo</creatorcontrib><creatorcontrib>Vinti, Gianluca</creatorcontrib><title>Voronovskaja Type Theorems and High-Order Convergence Neural Network Operators with Sigmoidal Functions</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>In the present paper, asymptotic expansion and Voronovskaja type theorem for the neural network operators have been proved. The above results are based on the computation of the algebraic truncated moments of the density functions generated by suitable sigmoidal functions, such as the logistic functions, sigmoidal functions generated by splines and other. Further, operators with high-order convergence are also studied by considering finite linear combination of the above neural network type operators and Voronovskaja type theorems are again proved. At the end of the paper, numerical results are provided.</description><subject>Asymptotic series</subject><subject>Convergence</subject><subject>Goats</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neural networks</subject><subject>Operators</subject><subject>Spline functions</subject><subject>Theorems</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74FadeoopSpIouKGwtx5mk6cMOdkLVvycQBDtmc2dx7ox0ELqm5JYSkt1F0o9KCCMJoSnlSXaCRlRKkqQiFae_u5Dn6CLGDSFMUc5GqHrzwTv_EbdmY_Dq2ABercEH2EdsXIHndbVOlqGAgKfefUCowFnAz9AFs-ujPfiwxcsGgml9iPhQt2v8Uld7Xxc9MOucbWvv4iU6K80uwtVPjtHr7GE1nSeL5ePT9H6RWE5Vm9AynZhJKWRqFQgg3KYyL3JVyIxlXJU5Y9IUAngus6y0wmYCmCwk5IJxSxUfo5vhbhP8ewex1RvfBde_1EwQQomigvQUGygbfIwBSt2Eem_CUVOiv4TqQajuhepvoTrrS3woxR52FYS_0_-0PgHhGXm4</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Costarelli, Danilo</creator><creator>Vinti, Gianluca</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8834-8877</orcidid></search><sort><creationdate>20200601</creationdate><title>Voronovskaja Type Theorems and High-Order Convergence Neural Network Operators with Sigmoidal Functions</title><author>Costarelli, Danilo ; Vinti, Gianluca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1f58a8f465c9e4e03c56bdb9d672739fb226ad4e3b677fc4c74e26d6eb423c193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic series</topic><topic>Convergence</topic><topic>Goats</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neural networks</topic><topic>Operators</topic><topic>Spline functions</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costarelli, Danilo</creatorcontrib><creatorcontrib>Vinti, Gianluca</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costarelli, Danilo</au><au>Vinti, Gianluca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voronovskaja Type Theorems and High-Order Convergence Neural Network Operators with Sigmoidal Functions</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>17</volume><issue>3</issue><artnum>77</artnum><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>In the present paper, asymptotic expansion and Voronovskaja type theorem for the neural network operators have been proved. The above results are based on the computation of the algebraic truncated moments of the density functions generated by suitable sigmoidal functions, such as the logistic functions, sigmoidal functions generated by splines and other. Further, operators with high-order convergence are also studied by considering finite linear combination of the above neural network type operators and Voronovskaja type theorems are again proved. At the end of the paper, numerical results are provided.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-020-01513-7</doi><orcidid>https://orcid.org/0000-0001-8834-8877</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-5446 |
ispartof | Mediterranean journal of mathematics, 2020-06, Vol.17 (3), Article 77 |
issn | 1660-5446 1660-5454 |
language | eng |
recordid | cdi_proquest_journals_2400109140 |
source | SpringerLink Journals - AutoHoldings |
subjects | Asymptotic series Convergence Goats Mathematics Mathematics and Statistics Neural networks Operators Spline functions Theorems |
title | Voronovskaja Type Theorems and High-Order Convergence Neural Network Operators with Sigmoidal Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voronovskaja%20Type%20Theorems%20and%20High-Order%20Convergence%20Neural%20Network%20Operators%20with%20Sigmoidal%20Functions&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Costarelli,%20Danilo&rft.date=2020-06-01&rft.volume=17&rft.issue=3&rft.artnum=77&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-020-01513-7&rft_dat=%3Cproquest_cross%3E2400109140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400109140&rft_id=info:pmid/&rfr_iscdi=true |