Voronovskaja Type Theorems and High-Order Convergence Neural Network Operators with Sigmoidal Functions

In the present paper, asymptotic expansion and Voronovskaja type theorem for the neural network operators have been proved. The above results are based on the computation of the algebraic truncated moments of the density functions generated by suitable sigmoidal functions, such as the logistic funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2020-06, Vol.17 (3), Article 77
Hauptverfasser: Costarelli, Danilo, Vinti, Gianluca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Mediterranean journal of mathematics
container_volume 17
creator Costarelli, Danilo
Vinti, Gianluca
description In the present paper, asymptotic expansion and Voronovskaja type theorem for the neural network operators have been proved. The above results are based on the computation of the algebraic truncated moments of the density functions generated by suitable sigmoidal functions, such as the logistic functions, sigmoidal functions generated by splines and other. Further, operators with high-order convergence are also studied by considering finite linear combination of the above neural network type operators and Voronovskaja type theorems are again proved. At the end of the paper, numerical results are provided.
doi_str_mv 10.1007/s00009-020-01513-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2400109140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400109140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1f58a8f465c9e4e03c56bdb9d672739fb226ad4e3b677fc4c74e26d6eb423c193</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74FadeoopSpIouKGwtx5mk6cMOdkLVvycQBDtmc2dx7ox0ELqm5JYSkt1F0o9KCCMJoSnlSXaCRlRKkqQiFae_u5Dn6CLGDSFMUc5GqHrzwTv_EbdmY_Dq2ABercEH2EdsXIHndbVOlqGAgKfefUCowFnAz9AFs-ujPfiwxcsGgml9iPhQt2v8Uld7Xxc9MOucbWvv4iU6K80uwtVPjtHr7GE1nSeL5ePT9H6RWE5Vm9AynZhJKWRqFQgg3KYyL3JVyIxlXJU5Y9IUAngus6y0wmYCmCwk5IJxSxUfo5vhbhP8ewex1RvfBde_1EwQQomigvQUGygbfIwBSt2Eem_CUVOiv4TqQajuhepvoTrrS3woxR52FYS_0_-0PgHhGXm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400109140</pqid></control><display><type>article</type><title>Voronovskaja Type Theorems and High-Order Convergence Neural Network Operators with Sigmoidal Functions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Costarelli, Danilo ; Vinti, Gianluca</creator><creatorcontrib>Costarelli, Danilo ; Vinti, Gianluca</creatorcontrib><description>In the present paper, asymptotic expansion and Voronovskaja type theorem for the neural network operators have been proved. The above results are based on the computation of the algebraic truncated moments of the density functions generated by suitable sigmoidal functions, such as the logistic functions, sigmoidal functions generated by splines and other. Further, operators with high-order convergence are also studied by considering finite linear combination of the above neural network type operators and Voronovskaja type theorems are again proved. At the end of the paper, numerical results are provided.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-020-01513-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Asymptotic series ; Convergence ; Goats ; Mathematics ; Mathematics and Statistics ; Neural networks ; Operators ; Spline functions ; Theorems</subject><ispartof>Mediterranean journal of mathematics, 2020-06, Vol.17 (3), Article 77</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1f58a8f465c9e4e03c56bdb9d672739fb226ad4e3b677fc4c74e26d6eb423c193</citedby><cites>FETCH-LOGICAL-c319t-1f58a8f465c9e4e03c56bdb9d672739fb226ad4e3b677fc4c74e26d6eb423c193</cites><orcidid>0000-0001-8834-8877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00009-020-01513-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00009-020-01513-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Costarelli, Danilo</creatorcontrib><creatorcontrib>Vinti, Gianluca</creatorcontrib><title>Voronovskaja Type Theorems and High-Order Convergence Neural Network Operators with Sigmoidal Functions</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>In the present paper, asymptotic expansion and Voronovskaja type theorem for the neural network operators have been proved. The above results are based on the computation of the algebraic truncated moments of the density functions generated by suitable sigmoidal functions, such as the logistic functions, sigmoidal functions generated by splines and other. Further, operators with high-order convergence are also studied by considering finite linear combination of the above neural network type operators and Voronovskaja type theorems are again proved. At the end of the paper, numerical results are provided.</description><subject>Asymptotic series</subject><subject>Convergence</subject><subject>Goats</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neural networks</subject><subject>Operators</subject><subject>Spline functions</subject><subject>Theorems</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ74FadeoopSpIouKGwtx5mk6cMOdkLVvycQBDtmc2dx7ox0ELqm5JYSkt1F0o9KCCMJoSnlSXaCRlRKkqQiFae_u5Dn6CLGDSFMUc5GqHrzwTv_EbdmY_Dq2ABercEH2EdsXIHndbVOlqGAgKfefUCowFnAz9AFs-ujPfiwxcsGgml9iPhQt2v8Uld7Xxc9MOucbWvv4iU6K80uwtVPjtHr7GE1nSeL5ePT9H6RWE5Vm9AynZhJKWRqFQgg3KYyL3JVyIxlXJU5Y9IUAngus6y0wmYCmCwk5IJxSxUfo5vhbhP8ewex1RvfBde_1EwQQomigvQUGygbfIwBSt2Eem_CUVOiv4TqQajuhepvoTrrS3woxR52FYS_0_-0PgHhGXm4</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Costarelli, Danilo</creator><creator>Vinti, Gianluca</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8834-8877</orcidid></search><sort><creationdate>20200601</creationdate><title>Voronovskaja Type Theorems and High-Order Convergence Neural Network Operators with Sigmoidal Functions</title><author>Costarelli, Danilo ; Vinti, Gianluca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1f58a8f465c9e4e03c56bdb9d672739fb226ad4e3b677fc4c74e26d6eb423c193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic series</topic><topic>Convergence</topic><topic>Goats</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neural networks</topic><topic>Operators</topic><topic>Spline functions</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costarelli, Danilo</creatorcontrib><creatorcontrib>Vinti, Gianluca</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costarelli, Danilo</au><au>Vinti, Gianluca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voronovskaja Type Theorems and High-Order Convergence Neural Network Operators with Sigmoidal Functions</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>17</volume><issue>3</issue><artnum>77</artnum><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>In the present paper, asymptotic expansion and Voronovskaja type theorem for the neural network operators have been proved. The above results are based on the computation of the algebraic truncated moments of the density functions generated by suitable sigmoidal functions, such as the logistic functions, sigmoidal functions generated by splines and other. Further, operators with high-order convergence are also studied by considering finite linear combination of the above neural network type operators and Voronovskaja type theorems are again proved. At the end of the paper, numerical results are provided.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-020-01513-7</doi><orcidid>https://orcid.org/0000-0001-8834-8877</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1660-5446
ispartof Mediterranean journal of mathematics, 2020-06, Vol.17 (3), Article 77
issn 1660-5446
1660-5454
language eng
recordid cdi_proquest_journals_2400109140
source SpringerLink Journals - AutoHoldings
subjects Asymptotic series
Convergence
Goats
Mathematics
Mathematics and Statistics
Neural networks
Operators
Spline functions
Theorems
title Voronovskaja Type Theorems and High-Order Convergence Neural Network Operators with Sigmoidal Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voronovskaja%20Type%20Theorems%20and%20High-Order%20Convergence%20Neural%20Network%20Operators%20with%20Sigmoidal%20Functions&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Costarelli,%20Danilo&rft.date=2020-06-01&rft.volume=17&rft.issue=3&rft.artnum=77&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-020-01513-7&rft_dat=%3Cproquest_cross%3E2400109140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400109140&rft_id=info:pmid/&rfr_iscdi=true