A Ioffe Trap Magnet for the Project 8 Atom Trapping Demonstrator

The goal of the Project 8 experiment (B. Monreal and J. Formaggio, 2009) is to measure the absolute neutrino mass using tritium, which involves precisely measuring the energies of the beta-decay electrons in the high-energy tail of the spectrum (A. A. Esfahani et al. , 2017). The experimental instal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2020-06, Vol.30 (4), p.1-5
Hauptverfasser: Radovinsky, Alexey L., Lindman, Alec, Formaggio, Joseph A., Minervini, Joseph V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 4
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 30
creator Radovinsky, Alexey L.
Lindman, Alec
Formaggio, Joseph A.
Minervini, Joseph V.
description The goal of the Project 8 experiment (B. Monreal and J. Formaggio, 2009) is to measure the absolute neutrino mass using tritium, which involves precisely measuring the energies of the beta-decay electrons in the high-energy tail of the spectrum (A. A. Esfahani et al. , 2017). The experimental installation of Project 8 Atom Trapping Demonstrator requires a magnet with rather unusual field properties. The magnet has to contain within the cold mass a large volume enclosed by a continuous, uninterrupted boundary higher than 2 T, whereas the field in a substantial volume inside this boundary has to be of the order of 10 −4 T or less. A 1-T solenoid field provides the background field necessary for the detection of the beta-decay electrons (A. A. Esfahani et al. , 2019). A proposed toroidal magnet system [a Ioffe-Pritchard trap (T. Bergeman et al. , 1987)] comprised of specially shaped multiple racetrack windings with opposing polarities satisfies these unusual requirements. The magnet is made of NbTi wire and expected to be conduction cooled. Manufacturability issues are addressed as well as the effect of tolerances on the field quality. The design includes additional topological features providing a low-field duct for interfacing with the peripheral coils of the velocity and state selector.
doi_str_mv 10.1109/TASC.2020.2985675
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2400103612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9057701</ieee_id><sourcerecordid>2400103612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-2aae9715b291b492d42b5e385fbace13d9758cb71ddff3f7bcd0ff4bfc37290a3</originalsourceid><addsrcrecordid>eNo9kE1PAyEQhonRxFr9AcYLieetDCwFbm7qV5MaTaxnAizUNnZZgR78926t8TRzeN53Mg9Cl0AmAETdLJu32YQSSiZUST4V_AiNgHNZUQ78eNgJh0pSyk7RWc4bQqCWNR-h2wbPYwgeL5Pp8bNZdb7gEBMuHx6_prjxrmCJmxK3v0i_7lb4zm9jl0syJaZzdBLMZ_YXf3OM3h_ul7OnavHyOJ81i8pRKUtFjfFKALdUga0VbWtquWeSB2ucB9YqwaWzAto2BBaEdS0JobbBMUEVMWyMrg-9fYpfO5-L3sRd6oaTmtbDO4RNgQ4UHCiXYs7JB92n9dakbw1E70XpvSi9F6X_RA2Zq0Nm7b3_5xXhQhBgP7-pY1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400103612</pqid></control><display><type>article</type><title>A Ioffe Trap Magnet for the Project 8 Atom Trapping Demonstrator</title><source>IEEE Electronic Library (IEL)</source><creator>Radovinsky, Alexey L. ; Lindman, Alec ; Formaggio, Joseph A. ; Minervini, Joseph V.</creator><creatorcontrib>Radovinsky, Alexey L. ; Lindman, Alec ; Formaggio, Joseph A. ; Minervini, Joseph V.</creatorcontrib><description>The goal of the Project 8 experiment (B. Monreal and J. Formaggio, 2009) is to measure the absolute neutrino mass using tritium, which involves precisely measuring the energies of the beta-decay electrons in the high-energy tail of the spectrum (A. A. Esfahani et al. , 2017). The experimental installation of Project 8 Atom Trapping Demonstrator requires a magnet with rather unusual field properties. The magnet has to contain within the cold mass a large volume enclosed by a continuous, uninterrupted boundary higher than 2 T, whereas the field in a substantial volume inside this boundary has to be of the order of 10 −4 T or less. A 1-T solenoid field provides the background field necessary for the detection of the beta-decay electrons (A. A. Esfahani et al. , 2019). A proposed toroidal magnet system [a Ioffe-Pritchard trap (T. Bergeman et al. , 1987)] comprised of specially shaped multiple racetrack windings with opposing polarities satisfies these unusual requirements. The magnet is made of NbTi wire and expected to be conduction cooled. Manufacturability issues are addressed as well as the effect of tolerances on the field quality. The design includes additional topological features providing a low-field duct for interfacing with the peripheral coils of the velocity and state selector.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2020.2985675</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>atom optics ; atomic measurements ; Beta decay ; Coils ; Coils (windings) ; Conduction cooling ; Electrons ; Magnetic properties ; Magnetic separation ; Magnetosphere ; Manufacturability ; neutrino sources ; Neutrinos ; particle beam injection ; Solenoids ; Superconducting magnets ; Tolerances ; Toroidal magnetic fields ; Trapping ; Tritium ; Windings ; Wires</subject><ispartof>IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-2aae9715b291b492d42b5e385fbace13d9758cb71ddff3f7bcd0ff4bfc37290a3</cites><orcidid>0000-0002-0053-2467 ; 0000-0003-0594-3350 ; 0000-0002-7896-9925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9057701$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9057701$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Radovinsky, Alexey L.</creatorcontrib><creatorcontrib>Lindman, Alec</creatorcontrib><creatorcontrib>Formaggio, Joseph A.</creatorcontrib><creatorcontrib>Minervini, Joseph V.</creatorcontrib><title>A Ioffe Trap Magnet for the Project 8 Atom Trapping Demonstrator</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The goal of the Project 8 experiment (B. Monreal and J. Formaggio, 2009) is to measure the absolute neutrino mass using tritium, which involves precisely measuring the energies of the beta-decay electrons in the high-energy tail of the spectrum (A. A. Esfahani et al. , 2017). The experimental installation of Project 8 Atom Trapping Demonstrator requires a magnet with rather unusual field properties. The magnet has to contain within the cold mass a large volume enclosed by a continuous, uninterrupted boundary higher than 2 T, whereas the field in a substantial volume inside this boundary has to be of the order of 10 −4 T or less. A 1-T solenoid field provides the background field necessary for the detection of the beta-decay electrons (A. A. Esfahani et al. , 2019). A proposed toroidal magnet system [a Ioffe-Pritchard trap (T. Bergeman et al. , 1987)] comprised of specially shaped multiple racetrack windings with opposing polarities satisfies these unusual requirements. The magnet is made of NbTi wire and expected to be conduction cooled. Manufacturability issues are addressed as well as the effect of tolerances on the field quality. The design includes additional topological features providing a low-field duct for interfacing with the peripheral coils of the velocity and state selector.</description><subject>atom optics</subject><subject>atomic measurements</subject><subject>Beta decay</subject><subject>Coils</subject><subject>Coils (windings)</subject><subject>Conduction cooling</subject><subject>Electrons</subject><subject>Magnetic properties</subject><subject>Magnetic separation</subject><subject>Magnetosphere</subject><subject>Manufacturability</subject><subject>neutrino sources</subject><subject>Neutrinos</subject><subject>particle beam injection</subject><subject>Solenoids</subject><subject>Superconducting magnets</subject><subject>Tolerances</subject><subject>Toroidal magnetic fields</subject><subject>Trapping</subject><subject>Tritium</subject><subject>Windings</subject><subject>Wires</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAyEQhonRxFr9AcYLieetDCwFbm7qV5MaTaxnAizUNnZZgR78926t8TRzeN53Mg9Cl0AmAETdLJu32YQSSiZUST4V_AiNgHNZUQ78eNgJh0pSyk7RWc4bQqCWNR-h2wbPYwgeL5Pp8bNZdb7gEBMuHx6_prjxrmCJmxK3v0i_7lb4zm9jl0syJaZzdBLMZ_YXf3OM3h_ul7OnavHyOJ81i8pRKUtFjfFKALdUga0VbWtquWeSB2ucB9YqwaWzAto2BBaEdS0JobbBMUEVMWyMrg-9fYpfO5-L3sRd6oaTmtbDO4RNgQ4UHCiXYs7JB92n9dakbw1E70XpvSi9F6X_RA2Zq0Nm7b3_5xXhQhBgP7-pY1Q</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Radovinsky, Alexey L.</creator><creator>Lindman, Alec</creator><creator>Formaggio, Joseph A.</creator><creator>Minervini, Joseph V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0053-2467</orcidid><orcidid>https://orcid.org/0000-0003-0594-3350</orcidid><orcidid>https://orcid.org/0000-0002-7896-9925</orcidid></search><sort><creationdate>20200601</creationdate><title>A Ioffe Trap Magnet for the Project 8 Atom Trapping Demonstrator</title><author>Radovinsky, Alexey L. ; Lindman, Alec ; Formaggio, Joseph A. ; Minervini, Joseph V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-2aae9715b291b492d42b5e385fbace13d9758cb71ddff3f7bcd0ff4bfc37290a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>atom optics</topic><topic>atomic measurements</topic><topic>Beta decay</topic><topic>Coils</topic><topic>Coils (windings)</topic><topic>Conduction cooling</topic><topic>Electrons</topic><topic>Magnetic properties</topic><topic>Magnetic separation</topic><topic>Magnetosphere</topic><topic>Manufacturability</topic><topic>neutrino sources</topic><topic>Neutrinos</topic><topic>particle beam injection</topic><topic>Solenoids</topic><topic>Superconducting magnets</topic><topic>Tolerances</topic><topic>Toroidal magnetic fields</topic><topic>Trapping</topic><topic>Tritium</topic><topic>Windings</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radovinsky, Alexey L.</creatorcontrib><creatorcontrib>Lindman, Alec</creatorcontrib><creatorcontrib>Formaggio, Joseph A.</creatorcontrib><creatorcontrib>Minervini, Joseph V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Radovinsky, Alexey L.</au><au>Lindman, Alec</au><au>Formaggio, Joseph A.</au><au>Minervini, Joseph V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Ioffe Trap Magnet for the Project 8 Atom Trapping Demonstrator</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The goal of the Project 8 experiment (B. Monreal and J. Formaggio, 2009) is to measure the absolute neutrino mass using tritium, which involves precisely measuring the energies of the beta-decay electrons in the high-energy tail of the spectrum (A. A. Esfahani et al. , 2017). The experimental installation of Project 8 Atom Trapping Demonstrator requires a magnet with rather unusual field properties. The magnet has to contain within the cold mass a large volume enclosed by a continuous, uninterrupted boundary higher than 2 T, whereas the field in a substantial volume inside this boundary has to be of the order of 10 −4 T or less. A 1-T solenoid field provides the background field necessary for the detection of the beta-decay electrons (A. A. Esfahani et al. , 2019). A proposed toroidal magnet system [a Ioffe-Pritchard trap (T. Bergeman et al. , 1987)] comprised of specially shaped multiple racetrack windings with opposing polarities satisfies these unusual requirements. The magnet is made of NbTi wire and expected to be conduction cooled. Manufacturability issues are addressed as well as the effect of tolerances on the field quality. The design includes additional topological features providing a low-field duct for interfacing with the peripheral coils of the velocity and state selector.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2020.2985675</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0053-2467</orcidid><orcidid>https://orcid.org/0000-0003-0594-3350</orcidid><orcidid>https://orcid.org/0000-0002-7896-9925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2400103612
source IEEE Electronic Library (IEL)
subjects atom optics
atomic measurements
Beta decay
Coils
Coils (windings)
Conduction cooling
Electrons
Magnetic properties
Magnetic separation
Magnetosphere
Manufacturability
neutrino sources
Neutrinos
particle beam injection
Solenoids
Superconducting magnets
Tolerances
Toroidal magnetic fields
Trapping
Tritium
Windings
Wires
title A Ioffe Trap Magnet for the Project 8 Atom Trapping Demonstrator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Ioffe%20Trap%20Magnet%20for%20the%20Project%208%20Atom%20Trapping%20Demonstrator&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Radovinsky,%20Alexey%20L.&rft.date=2020-06-01&rft.volume=30&rft.issue=4&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2020.2985675&rft_dat=%3Cproquest_RIE%3E2400103612%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400103612&rft_id=info:pmid/&rft_ieee_id=9057701&rfr_iscdi=true