A Ioffe Trap Magnet for the Project 8 Atom Trapping Demonstrator
The goal of the Project 8 experiment (B. Monreal and J. Formaggio, 2009) is to measure the absolute neutrino mass using tritium, which involves precisely measuring the energies of the beta-decay electrons in the high-energy tail of the spectrum (A. A. Esfahani et al. , 2017). The experimental instal...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2020-06, Vol.30 (4), p.1-5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 30 |
creator | Radovinsky, Alexey L. Lindman, Alec Formaggio, Joseph A. Minervini, Joseph V. |
description | The goal of the Project 8 experiment (B. Monreal and J. Formaggio, 2009) is to measure the absolute neutrino mass using tritium, which involves precisely measuring the energies of the beta-decay electrons in the high-energy tail of the spectrum (A. A. Esfahani et al. , 2017). The experimental installation of Project 8 Atom Trapping Demonstrator requires a magnet with rather unusual field properties. The magnet has to contain within the cold mass a large volume enclosed by a continuous, uninterrupted boundary higher than 2 T, whereas the field in a substantial volume inside this boundary has to be of the order of 10 −4 T or less. A 1-T solenoid field provides the background field necessary for the detection of the beta-decay electrons (A. A. Esfahani et al. , 2019). A proposed toroidal magnet system [a Ioffe-Pritchard trap (T. Bergeman et al. , 1987)] comprised of specially shaped multiple racetrack windings with opposing polarities satisfies these unusual requirements. The magnet is made of NbTi wire and expected to be conduction cooled. Manufacturability issues are addressed as well as the effect of tolerances on the field quality. The design includes additional topological features providing a low-field duct for interfacing with the peripheral coils of the velocity and state selector. |
doi_str_mv | 10.1109/TASC.2020.2985675 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2400103612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9057701</ieee_id><sourcerecordid>2400103612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-2aae9715b291b492d42b5e385fbace13d9758cb71ddff3f7bcd0ff4bfc37290a3</originalsourceid><addsrcrecordid>eNo9kE1PAyEQhonRxFr9AcYLieetDCwFbm7qV5MaTaxnAizUNnZZgR78926t8TRzeN53Mg9Cl0AmAETdLJu32YQSSiZUST4V_AiNgHNZUQ78eNgJh0pSyk7RWc4bQqCWNR-h2wbPYwgeL5Pp8bNZdb7gEBMuHx6_prjxrmCJmxK3v0i_7lb4zm9jl0syJaZzdBLMZ_YXf3OM3h_ul7OnavHyOJ81i8pRKUtFjfFKALdUga0VbWtquWeSB2ucB9YqwaWzAto2BBaEdS0JobbBMUEVMWyMrg-9fYpfO5-L3sRd6oaTmtbDO4RNgQ4UHCiXYs7JB92n9dakbw1E70XpvSi9F6X_RA2Zq0Nm7b3_5xXhQhBgP7-pY1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400103612</pqid></control><display><type>article</type><title>A Ioffe Trap Magnet for the Project 8 Atom Trapping Demonstrator</title><source>IEEE Electronic Library (IEL)</source><creator>Radovinsky, Alexey L. ; Lindman, Alec ; Formaggio, Joseph A. ; Minervini, Joseph V.</creator><creatorcontrib>Radovinsky, Alexey L. ; Lindman, Alec ; Formaggio, Joseph A. ; Minervini, Joseph V.</creatorcontrib><description>The goal of the Project 8 experiment (B. Monreal and J. Formaggio, 2009) is to measure the absolute neutrino mass using tritium, which involves precisely measuring the energies of the beta-decay electrons in the high-energy tail of the spectrum (A. A. Esfahani et al. , 2017). The experimental installation of Project 8 Atom Trapping Demonstrator requires a magnet with rather unusual field properties. The magnet has to contain within the cold mass a large volume enclosed by a continuous, uninterrupted boundary higher than 2 T, whereas the field in a substantial volume inside this boundary has to be of the order of 10 −4 T or less. A 1-T solenoid field provides the background field necessary for the detection of the beta-decay electrons (A. A. Esfahani et al. , 2019). A proposed toroidal magnet system [a Ioffe-Pritchard trap (T. Bergeman et al. , 1987)] comprised of specially shaped multiple racetrack windings with opposing polarities satisfies these unusual requirements. The magnet is made of NbTi wire and expected to be conduction cooled. Manufacturability issues are addressed as well as the effect of tolerances on the field quality. The design includes additional topological features providing a low-field duct for interfacing with the peripheral coils of the velocity and state selector.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2020.2985675</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>atom optics ; atomic measurements ; Beta decay ; Coils ; Coils (windings) ; Conduction cooling ; Electrons ; Magnetic properties ; Magnetic separation ; Magnetosphere ; Manufacturability ; neutrino sources ; Neutrinos ; particle beam injection ; Solenoids ; Superconducting magnets ; Tolerances ; Toroidal magnetic fields ; Trapping ; Tritium ; Windings ; Wires</subject><ispartof>IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-2aae9715b291b492d42b5e385fbace13d9758cb71ddff3f7bcd0ff4bfc37290a3</cites><orcidid>0000-0002-0053-2467 ; 0000-0003-0594-3350 ; 0000-0002-7896-9925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9057701$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9057701$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Radovinsky, Alexey L.</creatorcontrib><creatorcontrib>Lindman, Alec</creatorcontrib><creatorcontrib>Formaggio, Joseph A.</creatorcontrib><creatorcontrib>Minervini, Joseph V.</creatorcontrib><title>A Ioffe Trap Magnet for the Project 8 Atom Trapping Demonstrator</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The goal of the Project 8 experiment (B. Monreal and J. Formaggio, 2009) is to measure the absolute neutrino mass using tritium, which involves precisely measuring the energies of the beta-decay electrons in the high-energy tail of the spectrum (A. A. Esfahani et al. , 2017). The experimental installation of Project 8 Atom Trapping Demonstrator requires a magnet with rather unusual field properties. The magnet has to contain within the cold mass a large volume enclosed by a continuous, uninterrupted boundary higher than 2 T, whereas the field in a substantial volume inside this boundary has to be of the order of 10 −4 T or less. A 1-T solenoid field provides the background field necessary for the detection of the beta-decay electrons (A. A. Esfahani et al. , 2019). A proposed toroidal magnet system [a Ioffe-Pritchard trap (T. Bergeman et al. , 1987)] comprised of specially shaped multiple racetrack windings with opposing polarities satisfies these unusual requirements. The magnet is made of NbTi wire and expected to be conduction cooled. Manufacturability issues are addressed as well as the effect of tolerances on the field quality. The design includes additional topological features providing a low-field duct for interfacing with the peripheral coils of the velocity and state selector.</description><subject>atom optics</subject><subject>atomic measurements</subject><subject>Beta decay</subject><subject>Coils</subject><subject>Coils (windings)</subject><subject>Conduction cooling</subject><subject>Electrons</subject><subject>Magnetic properties</subject><subject>Magnetic separation</subject><subject>Magnetosphere</subject><subject>Manufacturability</subject><subject>neutrino sources</subject><subject>Neutrinos</subject><subject>particle beam injection</subject><subject>Solenoids</subject><subject>Superconducting magnets</subject><subject>Tolerances</subject><subject>Toroidal magnetic fields</subject><subject>Trapping</subject><subject>Tritium</subject><subject>Windings</subject><subject>Wires</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAyEQhonRxFr9AcYLieetDCwFbm7qV5MaTaxnAizUNnZZgR78926t8TRzeN53Mg9Cl0AmAETdLJu32YQSSiZUST4V_AiNgHNZUQ78eNgJh0pSyk7RWc4bQqCWNR-h2wbPYwgeL5Pp8bNZdb7gEBMuHx6_prjxrmCJmxK3v0i_7lb4zm9jl0syJaZzdBLMZ_YXf3OM3h_ul7OnavHyOJ81i8pRKUtFjfFKALdUga0VbWtquWeSB2ucB9YqwaWzAto2BBaEdS0JobbBMUEVMWyMrg-9fYpfO5-L3sRd6oaTmtbDO4RNgQ4UHCiXYs7JB92n9dakbw1E70XpvSi9F6X_RA2Zq0Nm7b3_5xXhQhBgP7-pY1Q</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Radovinsky, Alexey L.</creator><creator>Lindman, Alec</creator><creator>Formaggio, Joseph A.</creator><creator>Minervini, Joseph V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0053-2467</orcidid><orcidid>https://orcid.org/0000-0003-0594-3350</orcidid><orcidid>https://orcid.org/0000-0002-7896-9925</orcidid></search><sort><creationdate>20200601</creationdate><title>A Ioffe Trap Magnet for the Project 8 Atom Trapping Demonstrator</title><author>Radovinsky, Alexey L. ; Lindman, Alec ; Formaggio, Joseph A. ; Minervini, Joseph V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-2aae9715b291b492d42b5e385fbace13d9758cb71ddff3f7bcd0ff4bfc37290a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>atom optics</topic><topic>atomic measurements</topic><topic>Beta decay</topic><topic>Coils</topic><topic>Coils (windings)</topic><topic>Conduction cooling</topic><topic>Electrons</topic><topic>Magnetic properties</topic><topic>Magnetic separation</topic><topic>Magnetosphere</topic><topic>Manufacturability</topic><topic>neutrino sources</topic><topic>Neutrinos</topic><topic>particle beam injection</topic><topic>Solenoids</topic><topic>Superconducting magnets</topic><topic>Tolerances</topic><topic>Toroidal magnetic fields</topic><topic>Trapping</topic><topic>Tritium</topic><topic>Windings</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radovinsky, Alexey L.</creatorcontrib><creatorcontrib>Lindman, Alec</creatorcontrib><creatorcontrib>Formaggio, Joseph A.</creatorcontrib><creatorcontrib>Minervini, Joseph V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Radovinsky, Alexey L.</au><au>Lindman, Alec</au><au>Formaggio, Joseph A.</au><au>Minervini, Joseph V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Ioffe Trap Magnet for the Project 8 Atom Trapping Demonstrator</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The goal of the Project 8 experiment (B. Monreal and J. Formaggio, 2009) is to measure the absolute neutrino mass using tritium, which involves precisely measuring the energies of the beta-decay electrons in the high-energy tail of the spectrum (A. A. Esfahani et al. , 2017). The experimental installation of Project 8 Atom Trapping Demonstrator requires a magnet with rather unusual field properties. The magnet has to contain within the cold mass a large volume enclosed by a continuous, uninterrupted boundary higher than 2 T, whereas the field in a substantial volume inside this boundary has to be of the order of 10 −4 T or less. A 1-T solenoid field provides the background field necessary for the detection of the beta-decay electrons (A. A. Esfahani et al. , 2019). A proposed toroidal magnet system [a Ioffe-Pritchard trap (T. Bergeman et al. , 1987)] comprised of specially shaped multiple racetrack windings with opposing polarities satisfies these unusual requirements. The magnet is made of NbTi wire and expected to be conduction cooled. Manufacturability issues are addressed as well as the effect of tolerances on the field quality. The design includes additional topological features providing a low-field duct for interfacing with the peripheral coils of the velocity and state selector.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2020.2985675</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0053-2467</orcidid><orcidid>https://orcid.org/0000-0003-0594-3350</orcidid><orcidid>https://orcid.org/0000-0002-7896-9925</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2020-06, Vol.30 (4), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_2400103612 |
source | IEEE Electronic Library (IEL) |
subjects | atom optics atomic measurements Beta decay Coils Coils (windings) Conduction cooling Electrons Magnetic properties Magnetic separation Magnetosphere Manufacturability neutrino sources Neutrinos particle beam injection Solenoids Superconducting magnets Tolerances Toroidal magnetic fields Trapping Tritium Windings Wires |
title | A Ioffe Trap Magnet for the Project 8 Atom Trapping Demonstrator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Ioffe%20Trap%20Magnet%20for%20the%20Project%208%20Atom%20Trapping%20Demonstrator&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Radovinsky,%20Alexey%20L.&rft.date=2020-06-01&rft.volume=30&rft.issue=4&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2020.2985675&rft_dat=%3Cproquest_RIE%3E2400103612%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400103612&rft_id=info:pmid/&rft_ieee_id=9057701&rfr_iscdi=true |