A Generalized Version of ACE and Performance Analysis
This paper considers the problem of detecting a signal that belongs to an unknown one dimensional subspace of \mathbb {C}^{N \times 1} in additive interference-plus-noise whose covariance matrix is unknown. The interference-plus-noise is assumed to be modeled as a complex multivariate zero-mean rand...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2020, Vol.68, p.2574-2585 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2585 |
---|---|
container_issue | |
container_start_page | 2574 |
container_title | IEEE transactions on signal processing |
container_volume | 68 |
creator | Raghavan, R. S. |
description | This paper considers the problem of detecting a signal that belongs to an unknown one dimensional subspace of \mathbb {C}^{N \times 1} in additive interference-plus-noise whose covariance matrix is unknown. The interference-plus-noise is assumed to be modeled as a complex multivariate zero-mean random vector whose covariance matrix {\bf R}, is estimated from signal-free training vectors. The hypothesis test, labeled the generalized Adaptive Coherence Estimator (GACE) involves two test vectors, both of which contain the unknown signal. The test statistic reduces to the ACE test statistic as the signal-to-interference-plus-noise ratio of any one of the test vectors increases without limit. In the limit of large number of training samples the GACE test statistic reduces to the magnitude square of the inner-product of a signal vector in additive statistically independent white noise vectors. Analytical expressions for the probability of false alarm and the probability of detection of the GACE test are derived and the test is shown to have the constant false alarm rate (CFAR) property. Sample results to illustrate the performance of the detector are provided and compared with the performance of the generalized likelihood ratio test (GLRT) for the specific problem, along with results on the sequential application of the GLRT and GACE. |
doi_str_mv | 10.1109/TSP.2020.2985330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2400102957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9057479</ieee_id><sourcerecordid>2400102957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9af95e2b8f26cc3af502298e60f7f91f200365b0348e849a9e01acf281bdd41b3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsH7cBS8LnlNnv5LMMZRahYIFq3hbNskspLRJ3W0P9de7pcXTzOF5h3cexh4EjIUAfF5-LMYSJIwllkYpuGAjgVpkoIv8Mu1gVGbK4vua3cS4AhBaYz5ipuIz6im4dfdLLf-iELuh54Pn1WTKXd_yBQU_hI3rG-JV79aH2MU7duXdOtL9ed6yz5fpcvKazd9nb5NqnjUSxS5D59GQrEsv86ZRzhuQqR7l4AuPwksAlZsalC6p1OiQQLjGy1LUbatFrW7Z0-nuNgw_e4o7uxr2IZWIVur0A0g0RaLgRDVhiDGQt9vQbVw4WAH2KMcmOfYox57lpMjjKdIR0T-OYApdoPoD62FeFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400102957</pqid></control><display><type>article</type><title>A Generalized Version of ACE and Performance Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Raghavan, R. S.</creator><creatorcontrib>Raghavan, R. S.</creatorcontrib><description><![CDATA[This paper considers the problem of detecting a signal that belongs to an unknown one dimensional subspace of <inline-formula><tex-math notation="LaTeX">\mathbb {C}^{N \times 1}</tex-math></inline-formula> in additive interference-plus-noise whose covariance matrix is unknown. The interference-plus-noise is assumed to be modeled as a complex multivariate zero-mean random vector whose covariance matrix <inline-formula><tex-math notation="LaTeX">{\bf R}</tex-math></inline-formula>, is estimated from signal-free training vectors. The hypothesis test, labeled the generalized Adaptive Coherence Estimator (GACE) involves two test vectors, both of which contain the unknown signal. The test statistic reduces to the ACE test statistic as the signal-to-interference-plus-noise ratio of any one of the test vectors increases without limit. In the limit of large number of training samples the GACE test statistic reduces to the magnitude square of the inner-product of a signal vector in additive statistically independent white noise vectors. Analytical expressions for the probability of false alarm and the probability of detection of the GACE test are derived and the test is shown to have the constant false alarm rate (CFAR) property. Sample results to illustrate the performance of the detector are provided and compared with the performance of the generalized likelihood ratio test (GLRT) for the specific problem, along with results on the sequential application of the GLRT and GACE.]]></description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2020.2985330</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; blind detection in unknown interference ; Constant false alarm rate ; Covariance matrices ; Covariance matrix ; False alarms ; Generalized adaptive cosine estimator test ; Government ; Interference ; Likelihood ratio ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Noise ; Probability ; sequential detection with GLRT and GACE ; Signal to noise ratio ; Statistical analysis ; Statistical methods ; Training ; White noise</subject><ispartof>IEEE transactions on signal processing, 2020, Vol.68, p.2574-2585</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9af95e2b8f26cc3af502298e60f7f91f200365b0348e849a9e01acf281bdd41b3</citedby><cites>FETCH-LOGICAL-c291t-9af95e2b8f26cc3af502298e60f7f91f200365b0348e849a9e01acf281bdd41b3</cites><orcidid>0000-0001-7355-6817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9057479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9057479$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raghavan, R. S.</creatorcontrib><title>A Generalized Version of ACE and Performance Analysis</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description><![CDATA[This paper considers the problem of detecting a signal that belongs to an unknown one dimensional subspace of <inline-formula><tex-math notation="LaTeX">\mathbb {C}^{N \times 1}</tex-math></inline-formula> in additive interference-plus-noise whose covariance matrix is unknown. The interference-plus-noise is assumed to be modeled as a complex multivariate zero-mean random vector whose covariance matrix <inline-formula><tex-math notation="LaTeX">{\bf R}</tex-math></inline-formula>, is estimated from signal-free training vectors. The hypothesis test, labeled the generalized Adaptive Coherence Estimator (GACE) involves two test vectors, both of which contain the unknown signal. The test statistic reduces to the ACE test statistic as the signal-to-interference-plus-noise ratio of any one of the test vectors increases without limit. In the limit of large number of training samples the GACE test statistic reduces to the magnitude square of the inner-product of a signal vector in additive statistically independent white noise vectors. Analytical expressions for the probability of false alarm and the probability of detection of the GACE test are derived and the test is shown to have the constant false alarm rate (CFAR) property. Sample results to illustrate the performance of the detector are provided and compared with the performance of the generalized likelihood ratio test (GLRT) for the specific problem, along with results on the sequential application of the GLRT and GACE.]]></description><subject>Additives</subject><subject>blind detection in unknown interference</subject><subject>Constant false alarm rate</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>False alarms</subject><subject>Generalized adaptive cosine estimator test</subject><subject>Government</subject><subject>Interference</subject><subject>Likelihood ratio</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Noise</subject><subject>Probability</subject><subject>sequential detection with GLRT and GACE</subject><subject>Signal to noise ratio</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Training</subject><subject>White noise</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsH7cBS8LnlNnv5LMMZRahYIFq3hbNskspLRJ3W0P9de7pcXTzOF5h3cexh4EjIUAfF5-LMYSJIwllkYpuGAjgVpkoIv8Mu1gVGbK4vua3cS4AhBaYz5ipuIz6im4dfdLLf-iELuh54Pn1WTKXd_yBQU_hI3rG-JV79aH2MU7duXdOtL9ed6yz5fpcvKazd9nb5NqnjUSxS5D59GQrEsv86ZRzhuQqR7l4AuPwksAlZsalC6p1OiQQLjGy1LUbatFrW7Z0-nuNgw_e4o7uxr2IZWIVur0A0g0RaLgRDVhiDGQt9vQbVw4WAH2KMcmOfYox57lpMjjKdIR0T-OYApdoPoD62FeFg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Raghavan, R. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7355-6817</orcidid></search><sort><creationdate>2020</creationdate><title>A Generalized Version of ACE and Performance Analysis</title><author>Raghavan, R. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9af95e2b8f26cc3af502298e60f7f91f200365b0348e849a9e01acf281bdd41b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additives</topic><topic>blind detection in unknown interference</topic><topic>Constant false alarm rate</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>False alarms</topic><topic>Generalized adaptive cosine estimator test</topic><topic>Government</topic><topic>Interference</topic><topic>Likelihood ratio</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Noise</topic><topic>Probability</topic><topic>sequential detection with GLRT and GACE</topic><topic>Signal to noise ratio</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Training</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raghavan, R. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raghavan, R. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generalized Version of ACE and Performance Analysis</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2020</date><risdate>2020</risdate><volume>68</volume><spage>2574</spage><epage>2585</epage><pages>2574-2585</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract><![CDATA[This paper considers the problem of detecting a signal that belongs to an unknown one dimensional subspace of <inline-formula><tex-math notation="LaTeX">\mathbb {C}^{N \times 1}</tex-math></inline-formula> in additive interference-plus-noise whose covariance matrix is unknown. The interference-plus-noise is assumed to be modeled as a complex multivariate zero-mean random vector whose covariance matrix <inline-formula><tex-math notation="LaTeX">{\bf R}</tex-math></inline-formula>, is estimated from signal-free training vectors. The hypothesis test, labeled the generalized Adaptive Coherence Estimator (GACE) involves two test vectors, both of which contain the unknown signal. The test statistic reduces to the ACE test statistic as the signal-to-interference-plus-noise ratio of any one of the test vectors increases without limit. In the limit of large number of training samples the GACE test statistic reduces to the magnitude square of the inner-product of a signal vector in additive statistically independent white noise vectors. Analytical expressions for the probability of false alarm and the probability of detection of the GACE test are derived and the test is shown to have the constant false alarm rate (CFAR) property. Sample results to illustrate the performance of the detector are provided and compared with the performance of the generalized likelihood ratio test (GLRT) for the specific problem, along with results on the sequential application of the GLRT and GACE.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2020.2985330</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7355-6817</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2020, Vol.68, p.2574-2585 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_2400102957 |
source | IEEE Electronic Library (IEL) |
subjects | Additives blind detection in unknown interference Constant false alarm rate Covariance matrices Covariance matrix False alarms Generalized adaptive cosine estimator test Government Interference Likelihood ratio Mathematical analysis Matrix algebra Matrix methods Noise Probability sequential detection with GLRT and GACE Signal to noise ratio Statistical analysis Statistical methods Training White noise |
title | A Generalized Version of ACE and Performance Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generalized%20Version%20of%20ACE%20and%20Performance%20Analysis&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Raghavan,%20R.%20S.&rft.date=2020&rft.volume=68&rft.spage=2574&rft.epage=2585&rft.pages=2574-2585&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2020.2985330&rft_dat=%3Cproquest_RIE%3E2400102957%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400102957&rft_id=info:pmid/&rft_ieee_id=9057479&rfr_iscdi=true |