Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green’s Function Approach: The Preeminence of the Western Pacific

Global radiative feedbacks have been found to vary in global climate model (GCM) simulations. Atmospheric GCMs (AGCMs) driven with historical patterns of sea surface temperatures (SSTs) and sea ice concentrations produce radiative feedbacks that trend toward more negative values, implying low climat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2019-09, Vol.32 (17), p.5471-5491
Hauptverfasser: Dong, Yue, Proistosescu, Cristian, Armour, Kyle C., Battisti, David S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5491
container_issue 17
container_start_page 5471
container_title Journal of climate
container_volume 32
creator Dong, Yue
Proistosescu, Cristian
Armour, Kyle C.
Battisti, David S.
description Global radiative feedbacks have been found to vary in global climate model (GCM) simulations. Atmospheric GCMs (AGCMs) driven with historical patterns of sea surface temperatures (SSTs) and sea ice concentrations produce radiative feedbacks that trend toward more negative values, implying low climate sensitivity, over recent decades. Freely evolving coupled GCMs driven by increasing CO₂ produce radiative feedbacks that trend toward more positive values, implying increasing climate sensitivity, in the future. While this time variation in feedbacks has been linked to evolving SST patterns, the role of particular regions has not been quantified. Here, a Green’s function is derived from a suite of simulations within an AGCM (NCAR’s CAM4), allowing an attribution of global feedback changes to surface warming in each region. The results highlight the radiative response to surface warming in ascent regions of the western tropical Pacific as the dominant control on global radiative feedback changes. Historical warming from the 1950s to 2000s preferentially occurred in the western Pacific, yielding a strong global outgoing radiative response at the top of the atmosphere (TOA) and thus a strongly negative global feedback. Long-term warming in coupled GCMs occurs preferentially in tropical descent regions and in high latitudes, where surface warming yields small global TOA radiation change but large global surface air temperature change, and thus a less-negative global feedback. These results illuminate the importance of determining mechanisms of warm pool warming for understanding how feedbacks have varied historically and will evolve in the future.
doi_str_mv 10.1175/jcli-d-18-0843.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2399957132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26831664</jstor_id><sourcerecordid>26831664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-5e4171fc09ed47c0ac70b2d9cc756466fa474f6bf4f30e03bbc8d760e9302af43</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf33ggBrztPmjRpL8fclwyUoXgZ0jSZnVs7k3TgneCv8O_5S2ydeBUOed7nHF6ELgkMCBHJzVpvyqiISBpByuiAHKEeSWKIgLH4GPUgzViUiiQ5RWferwFIzAF66HMYgivzJpTVCs9KH2pXarXBqirwpAmNM3i8rzftf13h2uKlKkoVyr3BE2OKXOlXj0ONl2bVAm3uWbltp3pQIRhXedz4blR46oypvj--fKut9K9uuNu5WumXc3Ri1cabi7-3j54m48fRLFrcT-ej4SLSDEiIEsOIIFZDZgomNCgtII-LTGuRcMa5VUwwy3PLLAUDNM91WggOJqMQK8toH10fvO3at8b4INd149qrvYxplmWJIDRuKThQ2tXeO2PlzpVb5d4lAdlVLe9Gi7m8lSSVXdWStJGrQ2Td9ffPxzylhHNGfwBjL378</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399957132</pqid></control><display><type>article</type><title>Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green’s Function Approach: The Preeminence of the Western Pacific</title><source>American Meteorological Society</source><source>Free E-Journal (出版社公開部分のみ)</source><source>JSTOR</source><creator>Dong, Yue ; Proistosescu, Cristian ; Armour, Kyle C. ; Battisti, David S.</creator><creatorcontrib>Dong, Yue ; Proistosescu, Cristian ; Armour, Kyle C. ; Battisti, David S.</creatorcontrib><description>Global radiative feedbacks have been found to vary in global climate model (GCM) simulations. Atmospheric GCMs (AGCMs) driven with historical patterns of sea surface temperatures (SSTs) and sea ice concentrations produce radiative feedbacks that trend toward more negative values, implying low climate sensitivity, over recent decades. Freely evolving coupled GCMs driven by increasing CO₂ produce radiative feedbacks that trend toward more positive values, implying increasing climate sensitivity, in the future. While this time variation in feedbacks has been linked to evolving SST patterns, the role of particular regions has not been quantified. Here, a Green’s function is derived from a suite of simulations within an AGCM (NCAR’s CAM4), allowing an attribution of global feedback changes to surface warming in each region. The results highlight the radiative response to surface warming in ascent regions of the western tropical Pacific as the dominant control on global radiative feedback changes. Historical warming from the 1950s to 2000s preferentially occurred in the western Pacific, yielding a strong global outgoing radiative response at the top of the atmosphere (TOA) and thus a strongly negative global feedback. Long-term warming in coupled GCMs occurs preferentially in tropical descent regions and in high latitudes, where surface warming yields small global TOA radiation change but large global surface air temperature change, and thus a less-negative global feedback. These results illuminate the importance of determining mechanisms of warm pool warming for understanding how feedbacks have varied historically and will evolve in the future.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-18-0843.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Air temperature ; Ascent ; Atmosphere ; Carbon dioxide ; Climate ; Climate models ; Climate sensitivity ; Computer simulation ; Evolution ; Feedback ; Global climate ; Global climate models ; Radiation ; Regions ; Sea ice ; Sea ice concentrations ; Sea ice temperatures ; Sea surface ; Sea surface temperature ; Sensitivity ; Simulation ; Surface temperature ; Surface-air temperature relationships ; Temperature changes ; Tropical climate</subject><ispartof>Journal of climate, 2019-09, Vol.32 (17), p.5471-5491</ispartof><rights>2019 American Meteorological Society</rights><rights>Copyright American Meteorological Society Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-5e4171fc09ed47c0ac70b2d9cc756466fa474f6bf4f30e03bbc8d760e9302af43</citedby><cites>FETCH-LOGICAL-c401t-5e4171fc09ed47c0ac70b2d9cc756466fa474f6bf4f30e03bbc8d760e9302af43</cites><orcidid>0000-0001-6404-3446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26831664$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26831664$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Dong, Yue</creatorcontrib><creatorcontrib>Proistosescu, Cristian</creatorcontrib><creatorcontrib>Armour, Kyle C.</creatorcontrib><creatorcontrib>Battisti, David S.</creatorcontrib><title>Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green’s Function Approach: The Preeminence of the Western Pacific</title><title>Journal of climate</title><description>Global radiative feedbacks have been found to vary in global climate model (GCM) simulations. Atmospheric GCMs (AGCMs) driven with historical patterns of sea surface temperatures (SSTs) and sea ice concentrations produce radiative feedbacks that trend toward more negative values, implying low climate sensitivity, over recent decades. Freely evolving coupled GCMs driven by increasing CO₂ produce radiative feedbacks that trend toward more positive values, implying increasing climate sensitivity, in the future. While this time variation in feedbacks has been linked to evolving SST patterns, the role of particular regions has not been quantified. Here, a Green’s function is derived from a suite of simulations within an AGCM (NCAR’s CAM4), allowing an attribution of global feedback changes to surface warming in each region. The results highlight the radiative response to surface warming in ascent regions of the western tropical Pacific as the dominant control on global radiative feedback changes. Historical warming from the 1950s to 2000s preferentially occurred in the western Pacific, yielding a strong global outgoing radiative response at the top of the atmosphere (TOA) and thus a strongly negative global feedback. Long-term warming in coupled GCMs occurs preferentially in tropical descent regions and in high latitudes, where surface warming yields small global TOA radiation change but large global surface air temperature change, and thus a less-negative global feedback. These results illuminate the importance of determining mechanisms of warm pool warming for understanding how feedbacks have varied historically and will evolve in the future.</description><subject>Air temperature</subject><subject>Ascent</subject><subject>Atmosphere</subject><subject>Carbon dioxide</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climate sensitivity</subject><subject>Computer simulation</subject><subject>Evolution</subject><subject>Feedback</subject><subject>Global climate</subject><subject>Global climate models</subject><subject>Radiation</subject><subject>Regions</subject><subject>Sea ice</subject><subject>Sea ice concentrations</subject><subject>Sea ice temperatures</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Sensitivity</subject><subject>Simulation</subject><subject>Surface temperature</subject><subject>Surface-air temperature relationships</subject><subject>Temperature changes</subject><subject>Tropical climate</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kF1LwzAUhoMoOKf33ggBrztPmjRpL8fclwyUoXgZ0jSZnVs7k3TgneCv8O_5S2ydeBUOed7nHF6ELgkMCBHJzVpvyqiISBpByuiAHKEeSWKIgLH4GPUgzViUiiQ5RWferwFIzAF66HMYgivzJpTVCs9KH2pXarXBqirwpAmNM3i8rzftf13h2uKlKkoVyr3BE2OKXOlXj0ONl2bVAm3uWbltp3pQIRhXedz4blR46oypvj--fKut9K9uuNu5WumXc3Ri1cabi7-3j54m48fRLFrcT-ej4SLSDEiIEsOIIFZDZgomNCgtII-LTGuRcMa5VUwwy3PLLAUDNM91WggOJqMQK8toH10fvO3at8b4INd149qrvYxplmWJIDRuKThQ2tXeO2PlzpVb5d4lAdlVLe9Gi7m8lSSVXdWStJGrQ2Td9ffPxzylhHNGfwBjL378</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Dong, Yue</creator><creator>Proistosescu, Cristian</creator><creator>Armour, Kyle C.</creator><creator>Battisti, David S.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-6404-3446</orcidid></search><sort><creationdate>20190901</creationdate><title>Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green’s Function Approach</title><author>Dong, Yue ; Proistosescu, Cristian ; Armour, Kyle C. ; Battisti, David S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-5e4171fc09ed47c0ac70b2d9cc756466fa474f6bf4f30e03bbc8d760e9302af43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air temperature</topic><topic>Ascent</topic><topic>Atmosphere</topic><topic>Carbon dioxide</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climate sensitivity</topic><topic>Computer simulation</topic><topic>Evolution</topic><topic>Feedback</topic><topic>Global climate</topic><topic>Global climate models</topic><topic>Radiation</topic><topic>Regions</topic><topic>Sea ice</topic><topic>Sea ice concentrations</topic><topic>Sea ice temperatures</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Sensitivity</topic><topic>Simulation</topic><topic>Surface temperature</topic><topic>Surface-air temperature relationships</topic><topic>Temperature changes</topic><topic>Tropical climate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yue</creatorcontrib><creatorcontrib>Proistosescu, Cristian</creatorcontrib><creatorcontrib>Armour, Kyle C.</creatorcontrib><creatorcontrib>Battisti, David S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yue</au><au>Proistosescu, Cristian</au><au>Armour, Kyle C.</au><au>Battisti, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green’s Function Approach: The Preeminence of the Western Pacific</atitle><jtitle>Journal of climate</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>32</volume><issue>17</issue><spage>5471</spage><epage>5491</epage><pages>5471-5491</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Global radiative feedbacks have been found to vary in global climate model (GCM) simulations. Atmospheric GCMs (AGCMs) driven with historical patterns of sea surface temperatures (SSTs) and sea ice concentrations produce radiative feedbacks that trend toward more negative values, implying low climate sensitivity, over recent decades. Freely evolving coupled GCMs driven by increasing CO₂ produce radiative feedbacks that trend toward more positive values, implying increasing climate sensitivity, in the future. While this time variation in feedbacks has been linked to evolving SST patterns, the role of particular regions has not been quantified. Here, a Green’s function is derived from a suite of simulations within an AGCM (NCAR’s CAM4), allowing an attribution of global feedback changes to surface warming in each region. The results highlight the radiative response to surface warming in ascent regions of the western tropical Pacific as the dominant control on global radiative feedback changes. Historical warming from the 1950s to 2000s preferentially occurred in the western Pacific, yielding a strong global outgoing radiative response at the top of the atmosphere (TOA) and thus a strongly negative global feedback. Long-term warming in coupled GCMs occurs preferentially in tropical descent regions and in high latitudes, where surface warming yields small global TOA radiation change but large global surface air temperature change, and thus a less-negative global feedback. These results illuminate the importance of determining mechanisms of warm pool warming for understanding how feedbacks have varied historically and will evolve in the future.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-18-0843.1</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-6404-3446</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2019-09, Vol.32 (17), p.5471-5491
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_2399957132
source American Meteorological Society; Free E-Journal (出版社公開部分のみ); JSTOR
subjects Air temperature
Ascent
Atmosphere
Carbon dioxide
Climate
Climate models
Climate sensitivity
Computer simulation
Evolution
Feedback
Global climate
Global climate models
Radiation
Regions
Sea ice
Sea ice concentrations
Sea ice temperatures
Sea surface
Sea surface temperature
Sensitivity
Simulation
Surface temperature
Surface-air temperature relationships
Temperature changes
Tropical climate
title Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green’s Function Approach: The Preeminence of the Western Pacific
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attributing%20Historical%20and%20Future%20Evolution%20of%20Radiative%20Feedbacks%20to%20Regional%20Warming%20Patterns%20using%20a%20Green%E2%80%99s%20Function%20Approach:%20The%20Preeminence%20of%20the%20Western%20Pacific&rft.jtitle=Journal%20of%20climate&rft.au=Dong,%20Yue&rft.date=2019-09-01&rft.volume=32&rft.issue=17&rft.spage=5471&rft.epage=5491&rft.pages=5471-5491&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-18-0843.1&rft_dat=%3Cjstor_proqu%3E26831664%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399957132&rft_id=info:pmid/&rft_jstor_id=26831664&rfr_iscdi=true