Features of Profiles for Currents, Momentum Flux, and a Turbulence Dissipation Rate in Wind-Wave Channel

Vertical profiles of the mean horizontal currents U ( z ), the vertical momentum fluxes τ( z ), and the turbulence kinetic-energy dissipation rates (TKE dissipation rate) ε( z ) in the upper water layer (UWL) are considered and their joint analysis is carried out. For this purpose, data from laborat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya. Atmospheric and oceanic physics 2020-03, Vol.56 (2), p.200-209
Hauptverfasser: Polnikov, V. G., Baidakov, G. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue 2
container_start_page 200
container_title Izvestiya. Atmospheric and oceanic physics
container_volume 56
creator Polnikov, V. G.
Baidakov, G. A.
description Vertical profiles of the mean horizontal currents U ( z ), the vertical momentum fluxes τ( z ), and the turbulence kinetic-energy dissipation rates (TKE dissipation rate) ε( z ) in the upper water layer (UWL) are considered and their joint analysis is carried out. For this purpose, data from laboratory measurements performed in the wind-wave channel of the Institute of Applied Physics, Russian Academy of Sciences (RAS) [1, 2], are used. They correspond to conditions of strong wind and breaking wind waves. The profiles of the currents and momentum fluxes are estimated for x and z components of the velocity at five horizons in the UWL at four various wind values. The empirical estimates of ε( z ) obtained from the same data in the previous work [3] are used in the joint analysis. It is established that (a) velocity of currents U ( z ) increases noticeably when compared to the values of U ( z ) in the absence of waves, (b) the momentum flux in the water τ w ( z ) decreases noticeably when compared to that in the air τ a ( z ), and (c) τ w ( z ) significantly attenuates with depth according to ratio τ w ( z ) ~ 1/ z 2 . The mentioned anomalies of profiles U ( z ) and τ( z ) in the UWL are analyzed together with the previously determined pattern of TKE dissipation-rate falloff with depth according to ratio ε( z ) ~ 1/ z 2 in order to search for an interpretation of the results.
doi_str_mv 10.1134/S0001433820020097
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2399900886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399900886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2a440868c50f206632851f11b18ec5cabcf041dcbd10cfcdd4c76411068bcb373</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgnP4A3wK-rnqTtGn6KNWpMFF0Mt9Kmiauo0tm0oj-ezsm-CDChXvgfMFB6JTAOSEsvXgGAJIyJijAcEW-h0Yky7KEU_G6j0ZbOtnyh-gohBUApynkI7ScatlHrwN2Bj96Z9puwMZ5XEbvte3DBN-79QDiGk-7-DnB0jZY4nn0dey0VRpftSG0G9m3zuIn2WvcWrxobZMs5IfG5VJaq7tjdGBkF_TJzx-jl-n1vLxNZg83d-XlLFGM8D6hMk1BcKEyMBQ4Z1RkxBBSE6FVpmStDKSkUXVDQBnVNKnKeUoIcFGrmuVsjM52uRvv3qMOfbVy0duhsqKsKAoAIfigIjuV8i4Er0218e1a-q-KQLUdtPoz6OChO08YtPZN-9_k_03fTip2ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399900886</pqid></control><display><type>article</type><title>Features of Profiles for Currents, Momentum Flux, and a Turbulence Dissipation Rate in Wind-Wave Channel</title><source>Springer Nature - Complete Springer Journals</source><creator>Polnikov, V. G. ; Baidakov, G. A.</creator><creatorcontrib>Polnikov, V. G. ; Baidakov, G. A.</creatorcontrib><description>Vertical profiles of the mean horizontal currents U ( z ), the vertical momentum fluxes τ( z ), and the turbulence kinetic-energy dissipation rates (TKE dissipation rate) ε( z ) in the upper water layer (UWL) are considered and their joint analysis is carried out. For this purpose, data from laboratory measurements performed in the wind-wave channel of the Institute of Applied Physics, Russian Academy of Sciences (RAS) [1, 2], are used. They correspond to conditions of strong wind and breaking wind waves. The profiles of the currents and momentum fluxes are estimated for x and z components of the velocity at five horizons in the UWL at four various wind values. The empirical estimates of ε( z ) obtained from the same data in the previous work [3] are used in the joint analysis. It is established that (a) velocity of currents U ( z ) increases noticeably when compared to the values of U ( z ) in the absence of waves, (b) the momentum flux in the water τ w ( z ) decreases noticeably when compared to that in the air τ a ( z ), and (c) τ w ( z ) significantly attenuates with depth according to ratio τ w ( z ) ~ 1/ z 2 . The mentioned anomalies of profiles U ( z ) and τ( z ) in the UWL are analyzed together with the previously determined pattern of TKE dissipation-rate falloff with depth according to ratio ε( z ) ~ 1/ z 2 in order to search for an interpretation of the results.</description><identifier>ISSN: 0001-4338</identifier><identifier>EISSN: 1555-628X</identifier><identifier>DOI: 10.1134/S0001433820020097</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aerodynamics ; Anomalies ; Climatology ; Earth and Environmental Science ; Earth Sciences ; Empirical analysis ; Energy dissipation ; Energy exchange ; Fluxes ; Geophysics/Geodesy ; Momentum ; Momentum flux ; Momentum transfer ; Physics ; Profiles ; Strong winds ; Turbulence ; Velocity ; Vertical momentum ; Vertical profiles ; Wind ; Wind waves</subject><ispartof>Izvestiya. Atmospheric and oceanic physics, 2020-03, Vol.56 (2), p.200-209</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2a440868c50f206632851f11b18ec5cabcf041dcbd10cfcdd4c76411068bcb373</citedby><cites>FETCH-LOGICAL-c316t-2a440868c50f206632851f11b18ec5cabcf041dcbd10cfcdd4c76411068bcb373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001433820020097$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001433820020097$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Polnikov, V. G.</creatorcontrib><creatorcontrib>Baidakov, G. A.</creatorcontrib><title>Features of Profiles for Currents, Momentum Flux, and a Turbulence Dissipation Rate in Wind-Wave Channel</title><title>Izvestiya. Atmospheric and oceanic physics</title><addtitle>Izv. Atmos. Ocean. Phys</addtitle><description>Vertical profiles of the mean horizontal currents U ( z ), the vertical momentum fluxes τ( z ), and the turbulence kinetic-energy dissipation rates (TKE dissipation rate) ε( z ) in the upper water layer (UWL) are considered and their joint analysis is carried out. For this purpose, data from laboratory measurements performed in the wind-wave channel of the Institute of Applied Physics, Russian Academy of Sciences (RAS) [1, 2], are used. They correspond to conditions of strong wind and breaking wind waves. The profiles of the currents and momentum fluxes are estimated for x and z components of the velocity at five horizons in the UWL at four various wind values. The empirical estimates of ε( z ) obtained from the same data in the previous work [3] are used in the joint analysis. It is established that (a) velocity of currents U ( z ) increases noticeably when compared to the values of U ( z ) in the absence of waves, (b) the momentum flux in the water τ w ( z ) decreases noticeably when compared to that in the air τ a ( z ), and (c) τ w ( z ) significantly attenuates with depth according to ratio τ w ( z ) ~ 1/ z 2 . The mentioned anomalies of profiles U ( z ) and τ( z ) in the UWL are analyzed together with the previously determined pattern of TKE dissipation-rate falloff with depth according to ratio ε( z ) ~ 1/ z 2 in order to search for an interpretation of the results.</description><subject>Aerodynamics</subject><subject>Anomalies</subject><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Empirical analysis</subject><subject>Energy dissipation</subject><subject>Energy exchange</subject><subject>Fluxes</subject><subject>Geophysics/Geodesy</subject><subject>Momentum</subject><subject>Momentum flux</subject><subject>Momentum transfer</subject><subject>Physics</subject><subject>Profiles</subject><subject>Strong winds</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Vertical momentum</subject><subject>Vertical profiles</subject><subject>Wind</subject><subject>Wind waves</subject><issn>0001-4338</issn><issn>1555-628X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UF1LwzAUDaLgnP4A3wK-rnqTtGn6KNWpMFF0Mt9Kmiauo0tm0oj-ezsm-CDChXvgfMFB6JTAOSEsvXgGAJIyJijAcEW-h0Yky7KEU_G6j0ZbOtnyh-gohBUApynkI7ScatlHrwN2Bj96Z9puwMZ5XEbvte3DBN-79QDiGk-7-DnB0jZY4nn0dey0VRpftSG0G9m3zuIn2WvcWrxobZMs5IfG5VJaq7tjdGBkF_TJzx-jl-n1vLxNZg83d-XlLFGM8D6hMk1BcKEyMBQ4Z1RkxBBSE6FVpmStDKSkUXVDQBnVNKnKeUoIcFGrmuVsjM52uRvv3qMOfbVy0duhsqKsKAoAIfigIjuV8i4Er0218e1a-q-KQLUdtPoz6OChO08YtPZN-9_k_03fTip2ww</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Polnikov, V. G.</creator><creator>Baidakov, G. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20200301</creationdate><title>Features of Profiles for Currents, Momentum Flux, and a Turbulence Dissipation Rate in Wind-Wave Channel</title><author>Polnikov, V. G. ; Baidakov, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2a440868c50f206632851f11b18ec5cabcf041dcbd10cfcdd4c76411068bcb373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Anomalies</topic><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Empirical analysis</topic><topic>Energy dissipation</topic><topic>Energy exchange</topic><topic>Fluxes</topic><topic>Geophysics/Geodesy</topic><topic>Momentum</topic><topic>Momentum flux</topic><topic>Momentum transfer</topic><topic>Physics</topic><topic>Profiles</topic><topic>Strong winds</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Vertical momentum</topic><topic>Vertical profiles</topic><topic>Wind</topic><topic>Wind waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polnikov, V. G.</creatorcontrib><creatorcontrib>Baidakov, G. A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Izvestiya. Atmospheric and oceanic physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polnikov, V. G.</au><au>Baidakov, G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Features of Profiles for Currents, Momentum Flux, and a Turbulence Dissipation Rate in Wind-Wave Channel</atitle><jtitle>Izvestiya. Atmospheric and oceanic physics</jtitle><stitle>Izv. Atmos. Ocean. Phys</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>56</volume><issue>2</issue><spage>200</spage><epage>209</epage><pages>200-209</pages><issn>0001-4338</issn><eissn>1555-628X</eissn><abstract>Vertical profiles of the mean horizontal currents U ( z ), the vertical momentum fluxes τ( z ), and the turbulence kinetic-energy dissipation rates (TKE dissipation rate) ε( z ) in the upper water layer (UWL) are considered and their joint analysis is carried out. For this purpose, data from laboratory measurements performed in the wind-wave channel of the Institute of Applied Physics, Russian Academy of Sciences (RAS) [1, 2], are used. They correspond to conditions of strong wind and breaking wind waves. The profiles of the currents and momentum fluxes are estimated for x and z components of the velocity at five horizons in the UWL at four various wind values. The empirical estimates of ε( z ) obtained from the same data in the previous work [3] are used in the joint analysis. It is established that (a) velocity of currents U ( z ) increases noticeably when compared to the values of U ( z ) in the absence of waves, (b) the momentum flux in the water τ w ( z ) decreases noticeably when compared to that in the air τ a ( z ), and (c) τ w ( z ) significantly attenuates with depth according to ratio τ w ( z ) ~ 1/ z 2 . The mentioned anomalies of profiles U ( z ) and τ( z ) in the UWL are analyzed together with the previously determined pattern of TKE dissipation-rate falloff with depth according to ratio ε( z ) ~ 1/ z 2 in order to search for an interpretation of the results.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001433820020097</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4338
ispartof Izvestiya. Atmospheric and oceanic physics, 2020-03, Vol.56 (2), p.200-209
issn 0001-4338
1555-628X
language eng
recordid cdi_proquest_journals_2399900886
source Springer Nature - Complete Springer Journals
subjects Aerodynamics
Anomalies
Climatology
Earth and Environmental Science
Earth Sciences
Empirical analysis
Energy dissipation
Energy exchange
Fluxes
Geophysics/Geodesy
Momentum
Momentum flux
Momentum transfer
Physics
Profiles
Strong winds
Turbulence
Velocity
Vertical momentum
Vertical profiles
Wind
Wind waves
title Features of Profiles for Currents, Momentum Flux, and a Turbulence Dissipation Rate in Wind-Wave Channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A55%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Features%20of%20Profiles%20for%20Currents,%20Momentum%20Flux,%20and%20a%20Turbulence%20Dissipation%20Rate%20in%20Wind-Wave%20Channel&rft.jtitle=Izvestiya.%20Atmospheric%20and%20oceanic%20physics&rft.au=Polnikov,%20V.%20G.&rft.date=2020-03-01&rft.volume=56&rft.issue=2&rft.spage=200&rft.epage=209&rft.pages=200-209&rft.issn=0001-4338&rft.eissn=1555-628X&rft_id=info:doi/10.1134/S0001433820020097&rft_dat=%3Cproquest_cross%3E2399900886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399900886&rft_id=info:pmid/&rfr_iscdi=true