A Novel Parameterization of Snow Albedo Based on a Two-Layer Snow Model with a Mixture of Grain Habits
Snow albedo plays a critical role in the surface energy budget in snow-covered regions and is subject to large uncertainty due to variable physical and optical characteristics of snow. We develop an optically and microphysically consistent snow grain habit mixture (SGHM) model, aiming at an improved...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2019-05, Vol.76 (5), p.1419-1436 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1436 |
---|---|
container_issue | 5 |
container_start_page | 1419 |
container_title | Journal of the atmospheric sciences |
container_volume | 76 |
creator | Saito, Masanori Yang, Ping Loeb, Norman G. Kato, Seiji |
description | Snow albedo plays a critical role in the surface energy budget in snow-covered regions and is subject to large uncertainty due to variable physical and optical characteristics of snow. We develop an optically and microphysically consistent snow grain habit mixture (SGHM) model, aiming at an improved representation of bulk snow properties in conjunction with considering the particle size distribution, particle shape, and internally mixed black carbon (BC). Spectral snow albedos computed with two snow layers with the SGHM model implemented in an adding–doubling radiative transfer model agree with observations. Top-snow-layer optical properties essentially determine spectral snow albedo when the top-layer snow water equivalent (SWE) is large. When the top-layer SWE is less than 1 mm, the second-snow-layer optical properties have nonnegligible impacts on the albedo of the snow surface. Snow albedo enhancement with increasing solar zenith angle (SZA) largely depends on snow particle effective radius and also internally mixed BC. Based on the SGHM model and various sensitivity studies, single- and two-layer snow albedos are parameterized for six spectral bands used in NASA Langley Research Center’s modified Fu–Liou broadband radiative transfer model. Parameterized albedo is expressed as a function of snow particle effective radii of the two layers, SWE in the top layer, internally mixed BC mass fraction in both layers, and SZA. Both single-layer and two-layer parameterizations provide band-mean snow albedo consistent with rigorous calculations, achieving correlation coefficients close to 0.99 for all bands. |
doi_str_mv | 10.1175/JAS-D-18-0308.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2399803153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399803153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-6c704185b7aa0722482e061693e59e61bcacf54405148b1e04a06f1626bde4ab3</originalsourceid><addsrcrecordid>eNotkNFPwjAQhxujiYg--9rE58pd23Xd4wQFDagJ-Nx0WxdHgGI7RPzrHcF7ueTu-90lHyG3CPeIaTJ4yedsxFAzEKDv8Yz0MOHAQKrsnPQAOGcy4_qSXMW4hK54ij1S5_TVf7sVfbfBrl3rQvNr28ZvqK_pfOP3NF8VrvL0wUZX0W5u6WLv2dQeXDgBM191-X3Tfna7WfPT7oI7psfBNhs6sUXTxmtyUdtVdDf_vU8-nh4Xwwmbvo2fh_mUlQKhZapMQaJOitRaSDmXmjtQqDLhkswpLEpb1omUkKDUBTqQFlSNiquictIWok_uTne3wX_tXGzN0u_CpntpuMgyDQIT0VGDE1UGH2NwtdmGZm3DwSCYo0zTyTQjg9ocZRoUf6ZxZYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399803153</pqid></control><display><type>article</type><title>A Novel Parameterization of Snow Albedo Based on a Two-Layer Snow Model with a Mixture of Grain Habits</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Saito, Masanori ; Yang, Ping ; Loeb, Norman G. ; Kato, Seiji</creator><creatorcontrib>Saito, Masanori ; Yang, Ping ; Loeb, Norman G. ; Kato, Seiji</creatorcontrib><description>Snow albedo plays a critical role in the surface energy budget in snow-covered regions and is subject to large uncertainty due to variable physical and optical characteristics of snow. We develop an optically and microphysically consistent snow grain habit mixture (SGHM) model, aiming at an improved representation of bulk snow properties in conjunction with considering the particle size distribution, particle shape, and internally mixed black carbon (BC). Spectral snow albedos computed with two snow layers with the SGHM model implemented in an adding–doubling radiative transfer model agree with observations. Top-snow-layer optical properties essentially determine spectral snow albedo when the top-layer snow water equivalent (SWE) is large. When the top-layer SWE is less than 1 mm, the second-snow-layer optical properties have nonnegligible impacts on the albedo of the snow surface. Snow albedo enhancement with increasing solar zenith angle (SZA) largely depends on snow particle effective radius and also internally mixed BC. Based on the SGHM model and various sensitivity studies, single- and two-layer snow albedos are parameterized for six spectral bands used in NASA Langley Research Center’s modified Fu–Liou broadband radiative transfer model. Parameterized albedo is expressed as a function of snow particle effective radii of the two layers, SWE in the top layer, internally mixed BC mass fraction in both layers, and SZA. Both single-layer and two-layer parameterizations provide band-mean snow albedo consistent with rigorous calculations, achieving correlation coefficients close to 0.99 for all bands.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-18-0308.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Albedo ; Albedo (solar) ; Asymmetry ; Black carbon ; Broadband ; Coefficients ; Correlation coefficient ; Correlation coefficients ; Energy budget ; General circulation models ; Ice ; Optical properties ; Parameterization ; Particle shape ; Particle size ; Particle size distribution ; Radiative transfer ; Research facilities ; Simulation ; Size distribution ; Snow ; Snow cover ; Snow-water equivalent ; Spectra ; Spectral bands ; Studies ; Surface energy ; Surface properties</subject><ispartof>Journal of the atmospheric sciences, 2019-05, Vol.76 (5), p.1419-1436</ispartof><rights>Copyright American Meteorological Society 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-6c704185b7aa0722482e061693e59e61bcacf54405148b1e04a06f1626bde4ab3</citedby><cites>FETCH-LOGICAL-c310t-6c704185b7aa0722482e061693e59e61bcacf54405148b1e04a06f1626bde4ab3</cites><orcidid>0000-0001-5188-7471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3667,27903,27904</link.rule.ids></links><search><creatorcontrib>Saito, Masanori</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Loeb, Norman G.</creatorcontrib><creatorcontrib>Kato, Seiji</creatorcontrib><title>A Novel Parameterization of Snow Albedo Based on a Two-Layer Snow Model with a Mixture of Grain Habits</title><title>Journal of the atmospheric sciences</title><description>Snow albedo plays a critical role in the surface energy budget in snow-covered regions and is subject to large uncertainty due to variable physical and optical characteristics of snow. We develop an optically and microphysically consistent snow grain habit mixture (SGHM) model, aiming at an improved representation of bulk snow properties in conjunction with considering the particle size distribution, particle shape, and internally mixed black carbon (BC). Spectral snow albedos computed with two snow layers with the SGHM model implemented in an adding–doubling radiative transfer model agree with observations. Top-snow-layer optical properties essentially determine spectral snow albedo when the top-layer snow water equivalent (SWE) is large. When the top-layer SWE is less than 1 mm, the second-snow-layer optical properties have nonnegligible impacts on the albedo of the snow surface. Snow albedo enhancement with increasing solar zenith angle (SZA) largely depends on snow particle effective radius and also internally mixed BC. Based on the SGHM model and various sensitivity studies, single- and two-layer snow albedos are parameterized for six spectral bands used in NASA Langley Research Center’s modified Fu–Liou broadband radiative transfer model. Parameterized albedo is expressed as a function of snow particle effective radii of the two layers, SWE in the top layer, internally mixed BC mass fraction in both layers, and SZA. Both single-layer and two-layer parameterizations provide band-mean snow albedo consistent with rigorous calculations, achieving correlation coefficients close to 0.99 for all bands.</description><subject>Albedo</subject><subject>Albedo (solar)</subject><subject>Asymmetry</subject><subject>Black carbon</subject><subject>Broadband</subject><subject>Coefficients</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Energy budget</subject><subject>General circulation models</subject><subject>Ice</subject><subject>Optical properties</subject><subject>Parameterization</subject><subject>Particle shape</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Radiative transfer</subject><subject>Research facilities</subject><subject>Simulation</subject><subject>Size distribution</subject><subject>Snow</subject><subject>Snow cover</subject><subject>Snow-water equivalent</subject><subject>Spectra</subject><subject>Spectral bands</subject><subject>Studies</subject><subject>Surface energy</subject><subject>Surface properties</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkNFPwjAQhxujiYg--9rE58pd23Xd4wQFDagJ-Nx0WxdHgGI7RPzrHcF7ueTu-90lHyG3CPeIaTJ4yedsxFAzEKDv8Yz0MOHAQKrsnPQAOGcy4_qSXMW4hK54ij1S5_TVf7sVfbfBrl3rQvNr28ZvqK_pfOP3NF8VrvL0wUZX0W5u6WLv2dQeXDgBM191-X3Tfna7WfPT7oI7psfBNhs6sUXTxmtyUdtVdDf_vU8-nh4Xwwmbvo2fh_mUlQKhZapMQaJOitRaSDmXmjtQqDLhkswpLEpb1omUkKDUBTqQFlSNiquictIWok_uTne3wX_tXGzN0u_CpntpuMgyDQIT0VGDE1UGH2NwtdmGZm3DwSCYo0zTyTQjg9ocZRoUf6ZxZYw</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Saito, Masanori</creator><creator>Yang, Ping</creator><creator>Loeb, Norman G.</creator><creator>Kato, Seiji</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-5188-7471</orcidid></search><sort><creationdate>201905</creationdate><title>A Novel Parameterization of Snow Albedo Based on a Two-Layer Snow Model with a Mixture of Grain Habits</title><author>Saito, Masanori ; Yang, Ping ; Loeb, Norman G. ; Kato, Seiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-6c704185b7aa0722482e061693e59e61bcacf54405148b1e04a06f1626bde4ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Albedo</topic><topic>Albedo (solar)</topic><topic>Asymmetry</topic><topic>Black carbon</topic><topic>Broadband</topic><topic>Coefficients</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Energy budget</topic><topic>General circulation models</topic><topic>Ice</topic><topic>Optical properties</topic><topic>Parameterization</topic><topic>Particle shape</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Radiative transfer</topic><topic>Research facilities</topic><topic>Simulation</topic><topic>Size distribution</topic><topic>Snow</topic><topic>Snow cover</topic><topic>Snow-water equivalent</topic><topic>Spectra</topic><topic>Spectral bands</topic><topic>Studies</topic><topic>Surface energy</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saito, Masanori</creatorcontrib><creatorcontrib>Yang, Ping</creatorcontrib><creatorcontrib>Loeb, Norman G.</creatorcontrib><creatorcontrib>Kato, Seiji</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saito, Masanori</au><au>Yang, Ping</au><au>Loeb, Norman G.</au><au>Kato, Seiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Parameterization of Snow Albedo Based on a Two-Layer Snow Model with a Mixture of Grain Habits</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2019-05</date><risdate>2019</risdate><volume>76</volume><issue>5</issue><spage>1419</spage><epage>1436</epage><pages>1419-1436</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>Snow albedo plays a critical role in the surface energy budget in snow-covered regions and is subject to large uncertainty due to variable physical and optical characteristics of snow. We develop an optically and microphysically consistent snow grain habit mixture (SGHM) model, aiming at an improved representation of bulk snow properties in conjunction with considering the particle size distribution, particle shape, and internally mixed black carbon (BC). Spectral snow albedos computed with two snow layers with the SGHM model implemented in an adding–doubling radiative transfer model agree with observations. Top-snow-layer optical properties essentially determine spectral snow albedo when the top-layer snow water equivalent (SWE) is large. When the top-layer SWE is less than 1 mm, the second-snow-layer optical properties have nonnegligible impacts on the albedo of the snow surface. Snow albedo enhancement with increasing solar zenith angle (SZA) largely depends on snow particle effective radius and also internally mixed BC. Based on the SGHM model and various sensitivity studies, single- and two-layer snow albedos are parameterized for six spectral bands used in NASA Langley Research Center’s modified Fu–Liou broadband radiative transfer model. Parameterized albedo is expressed as a function of snow particle effective radii of the two layers, SWE in the top layer, internally mixed BC mass fraction in both layers, and SZA. Both single-layer and two-layer parameterizations provide band-mean snow albedo consistent with rigorous calculations, achieving correlation coefficients close to 0.99 for all bands.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-18-0308.1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5188-7471</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2019-05, Vol.76 (5), p.1419-1436 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_journals_2399803153 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Albedo Albedo (solar) Asymmetry Black carbon Broadband Coefficients Correlation coefficient Correlation coefficients Energy budget General circulation models Ice Optical properties Parameterization Particle shape Particle size Particle size distribution Radiative transfer Research facilities Simulation Size distribution Snow Snow cover Snow-water equivalent Spectra Spectral bands Studies Surface energy Surface properties |
title | A Novel Parameterization of Snow Albedo Based on a Two-Layer Snow Model with a Mixture of Grain Habits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Parameterization%20of%20Snow%20Albedo%20Based%20on%20a%20Two-Layer%20Snow%20Model%20with%20a%20Mixture%20of%20Grain%20Habits&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Saito,%20Masanori&rft.date=2019-05&rft.volume=76&rft.issue=5&rft.spage=1419&rft.epage=1436&rft.pages=1419-1436&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-18-0308.1&rft_dat=%3Cproquest_cross%3E2399803153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399803153&rft_id=info:pmid/&rfr_iscdi=true |