Rule-based aggregation driven by similar images for visual saliency detection
The visual saliency detection consists in determining the relevant visual information in a scene to segment it from the background. This paper proposes visual saliency detection in a rule-based approach using the image similarity cue to improve saliency detection performance. Our system induces rule...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2020-06, Vol.50 (6), p.1745-1762 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1762 |
---|---|
container_issue | 6 |
container_start_page | 1745 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 50 |
creator | Lopez-Alanis, Alberto Lizarraga-Morales, Rocio A. Contreras-Cruz, Marco A. Ayala-Ramirez, Victor Sanchez-Yanez, Raul E. Trujillo-Romero, Felipe |
description | The visual saliency detection consists in determining the relevant visual information in a scene to segment it from the background. This paper proposes visual saliency detection in a rule-based approach using the image similarity cue to improve saliency detection performance. Our system induces rules for saliency detection, and for a given input image, determines the subset of rules to be used from a set of candidate rules. The proposed approach consists of two main stages: training and testing. Firstly, during the training stage, our system learns an ensemble of rough-set-based rules by combining knowledge extracted from outputs of four state-of-the-art saliency models. Secondly, our system determines the most suitable subset of induced rules for binary detection of pixels of a salient object in an image. The decision of the best subset of rules is based on the image similarity cue. The binary determination of saliency in the output image, exempts us from performing a post-processing stage as is needed in most saliency approaches. The proposed method is evaluated quantitatively on three challenging databases designed for the saliency detection task. The results obtained from the performed experiments indicate that the proposed method outperforms the state-of-the-art approaches used for comparison. |
doi_str_mv | 10.1007/s10489-019-01582-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2399630171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399630171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9a3fb23e0ff727e75b3cd49da84523d85f935b961f10af90fbc431a01ab5e573</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz9FJ0zTNURa_YEWQPXgLSTspXbrtmrQL--_NWsGbh2Eu7zPD-xByw-GOA6j7yCEvNQN-HFlmrDghCy6VYCrX6pQsQGc5Kwr9eU4uYtwAgBDAF-TtY-qQORuxprZpAjZ2bIee1qHdY0_dgcZ223Y20HZrG4zUD4Hu2zjZjkbbtdhXB1rjiNURuyJn3nYRr3_3JVk_Pa6XL2z1_vy6fFixSnA9Mm2Fd5lA8F5lCpV0oqpzXdsyl5moS-m1kE4X3HOwXoN3VS64BW6dxFTqktzOZ3dh-JowjmYzTKFPH00mtC5SM8VTKptTVRhiDOjNLqQS4WA4mKM1M1szyZr5sWaKBIkZiincNxj-Tv9DfQPP43BT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399630171</pqid></control><display><type>article</type><title>Rule-based aggregation driven by similar images for visual saliency detection</title><source>SpringerNature Journals</source><creator>Lopez-Alanis, Alberto ; Lizarraga-Morales, Rocio A. ; Contreras-Cruz, Marco A. ; Ayala-Ramirez, Victor ; Sanchez-Yanez, Raul E. ; Trujillo-Romero, Felipe</creator><creatorcontrib>Lopez-Alanis, Alberto ; Lizarraga-Morales, Rocio A. ; Contreras-Cruz, Marco A. ; Ayala-Ramirez, Victor ; Sanchez-Yanez, Raul E. ; Trujillo-Romero, Felipe</creatorcontrib><description>The visual saliency detection consists in determining the relevant visual information in a scene to segment it from the background. This paper proposes visual saliency detection in a rule-based approach using the image similarity cue to improve saliency detection performance. Our system induces rules for saliency detection, and for a given input image, determines the subset of rules to be used from a set of candidate rules. The proposed approach consists of two main stages: training and testing. Firstly, during the training stage, our system learns an ensemble of rough-set-based rules by combining knowledge extracted from outputs of four state-of-the-art saliency models. Secondly, our system determines the most suitable subset of induced rules for binary detection of pixels of a salient object in an image. The decision of the best subset of rules is based on the image similarity cue. The binary determination of saliency in the output image, exempts us from performing a post-processing stage as is needed in most saliency approaches. The proposed method is evaluated quantitatively on three challenging databases designed for the saliency detection task. The results obtained from the performed experiments indicate that the proposed method outperforms the state-of-the-art approaches used for comparison.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-019-01582-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Image detection ; Machines ; Manufacturing ; Mechanical Engineering ; Post-production processing ; Processes ; Salience ; Similarity ; Training</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2020-06, Vol.50 (6), p.1745-1762</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9a3fb23e0ff727e75b3cd49da84523d85f935b961f10af90fbc431a01ab5e573</citedby><cites>FETCH-LOGICAL-c319t-9a3fb23e0ff727e75b3cd49da84523d85f935b961f10af90fbc431a01ab5e573</cites><orcidid>0000-0003-4928-8036 ; 0000-0002-0356-9310 ; 0000-0002-5431-6954 ; 0000-0003-3755-2637 ; 0000-0002-3833-0721 ; 0000-0001-8466-5787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-019-01582-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-019-01582-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lopez-Alanis, Alberto</creatorcontrib><creatorcontrib>Lizarraga-Morales, Rocio A.</creatorcontrib><creatorcontrib>Contreras-Cruz, Marco A.</creatorcontrib><creatorcontrib>Ayala-Ramirez, Victor</creatorcontrib><creatorcontrib>Sanchez-Yanez, Raul E.</creatorcontrib><creatorcontrib>Trujillo-Romero, Felipe</creatorcontrib><title>Rule-based aggregation driven by similar images for visual saliency detection</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>The visual saliency detection consists in determining the relevant visual information in a scene to segment it from the background. This paper proposes visual saliency detection in a rule-based approach using the image similarity cue to improve saliency detection performance. Our system induces rules for saliency detection, and for a given input image, determines the subset of rules to be used from a set of candidate rules. The proposed approach consists of two main stages: training and testing. Firstly, during the training stage, our system learns an ensemble of rough-set-based rules by combining knowledge extracted from outputs of four state-of-the-art saliency models. Secondly, our system determines the most suitable subset of induced rules for binary detection of pixels of a salient object in an image. The decision of the best subset of rules is based on the image similarity cue. The binary determination of saliency in the output image, exempts us from performing a post-processing stage as is needed in most saliency approaches. The proposed method is evaluated quantitatively on three challenging databases designed for the saliency detection task. The results obtained from the performed experiments indicate that the proposed method outperforms the state-of-the-art approaches used for comparison.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Image detection</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Post-production processing</subject><subject>Processes</subject><subject>Salience</subject><subject>Similarity</subject><subject>Training</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMouH78AU8Bz9FJ0zTNURa_YEWQPXgLSTspXbrtmrQL--_NWsGbh2Eu7zPD-xByw-GOA6j7yCEvNQN-HFlmrDghCy6VYCrX6pQsQGc5Kwr9eU4uYtwAgBDAF-TtY-qQORuxprZpAjZ2bIee1qHdY0_dgcZ223Y20HZrG4zUD4Hu2zjZjkbbtdhXB1rjiNURuyJn3nYRr3_3JVk_Pa6XL2z1_vy6fFixSnA9Mm2Fd5lA8F5lCpV0oqpzXdsyl5moS-m1kE4X3HOwXoN3VS64BW6dxFTqktzOZ3dh-JowjmYzTKFPH00mtC5SM8VTKptTVRhiDOjNLqQS4WA4mKM1M1szyZr5sWaKBIkZiincNxj-Tv9DfQPP43BT</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Lopez-Alanis, Alberto</creator><creator>Lizarraga-Morales, Rocio A.</creator><creator>Contreras-Cruz, Marco A.</creator><creator>Ayala-Ramirez, Victor</creator><creator>Sanchez-Yanez, Raul E.</creator><creator>Trujillo-Romero, Felipe</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4928-8036</orcidid><orcidid>https://orcid.org/0000-0002-0356-9310</orcidid><orcidid>https://orcid.org/0000-0002-5431-6954</orcidid><orcidid>https://orcid.org/0000-0003-3755-2637</orcidid><orcidid>https://orcid.org/0000-0002-3833-0721</orcidid><orcidid>https://orcid.org/0000-0001-8466-5787</orcidid></search><sort><creationdate>20200601</creationdate><title>Rule-based aggregation driven by similar images for visual saliency detection</title><author>Lopez-Alanis, Alberto ; Lizarraga-Morales, Rocio A. ; Contreras-Cruz, Marco A. ; Ayala-Ramirez, Victor ; Sanchez-Yanez, Raul E. ; Trujillo-Romero, Felipe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9a3fb23e0ff727e75b3cd49da84523d85f935b961f10af90fbc431a01ab5e573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Image detection</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Post-production processing</topic><topic>Processes</topic><topic>Salience</topic><topic>Similarity</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Alanis, Alberto</creatorcontrib><creatorcontrib>Lizarraga-Morales, Rocio A.</creatorcontrib><creatorcontrib>Contreras-Cruz, Marco A.</creatorcontrib><creatorcontrib>Ayala-Ramirez, Victor</creatorcontrib><creatorcontrib>Sanchez-Yanez, Raul E.</creatorcontrib><creatorcontrib>Trujillo-Romero, Felipe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Alanis, Alberto</au><au>Lizarraga-Morales, Rocio A.</au><au>Contreras-Cruz, Marco A.</au><au>Ayala-Ramirez, Victor</au><au>Sanchez-Yanez, Raul E.</au><au>Trujillo-Romero, Felipe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rule-based aggregation driven by similar images for visual saliency detection</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>50</volume><issue>6</issue><spage>1745</spage><epage>1762</epage><pages>1745-1762</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>The visual saliency detection consists in determining the relevant visual information in a scene to segment it from the background. This paper proposes visual saliency detection in a rule-based approach using the image similarity cue to improve saliency detection performance. Our system induces rules for saliency detection, and for a given input image, determines the subset of rules to be used from a set of candidate rules. The proposed approach consists of two main stages: training and testing. Firstly, during the training stage, our system learns an ensemble of rough-set-based rules by combining knowledge extracted from outputs of four state-of-the-art saliency models. Secondly, our system determines the most suitable subset of induced rules for binary detection of pixels of a salient object in an image. The decision of the best subset of rules is based on the image similarity cue. The binary determination of saliency in the output image, exempts us from performing a post-processing stage as is needed in most saliency approaches. The proposed method is evaluated quantitatively on three challenging databases designed for the saliency detection task. The results obtained from the performed experiments indicate that the proposed method outperforms the state-of-the-art approaches used for comparison.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-019-01582-6</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4928-8036</orcidid><orcidid>https://orcid.org/0000-0002-0356-9310</orcidid><orcidid>https://orcid.org/0000-0002-5431-6954</orcidid><orcidid>https://orcid.org/0000-0003-3755-2637</orcidid><orcidid>https://orcid.org/0000-0002-3833-0721</orcidid><orcidid>https://orcid.org/0000-0001-8466-5787</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2020-06, Vol.50 (6), p.1745-1762 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_journals_2399630171 |
source | SpringerNature Journals |
subjects | Artificial Intelligence Computer Science Image detection Machines Manufacturing Mechanical Engineering Post-production processing Processes Salience Similarity Training |
title | Rule-based aggregation driven by similar images for visual saliency detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rule-based%20aggregation%20driven%20by%20similar%20images%20for%20visual%20saliency%20detection&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Lopez-Alanis,%20Alberto&rft.date=2020-06-01&rft.volume=50&rft.issue=6&rft.spage=1745&rft.epage=1762&rft.pages=1745-1762&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-019-01582-6&rft_dat=%3Cproquest_cross%3E2399630171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399630171&rft_id=info:pmid/&rfr_iscdi=true |