The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region
Ragweed Pollen Alarm System (R-PAS) has been running since 2014 to provide pollen information for countries in the Pannonian biogeographical region (PBR). The aim of this study was to develop forecast models of the representative aerobiological monitoring stations, identified by analysis based on a...
Gespeichert in:
Veröffentlicht in: | Aerobiologia 2020-06, Vol.36 (2), p.131-140 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 140 |
---|---|
container_issue | 2 |
container_start_page | 131 |
container_title | Aerobiologia |
container_volume | 36 |
creator | Csépe, Z. Leelőssy, Á. Mányoki, G. Kajtor-Apatini, D. Udvardy, O. Péter, B. Páldy, A. Gelybó, G. Szigeti, T. Pándics, T. Kofol-Seliger, A. Simčič, A. Leru, P. M. Eftimie, A.-M. Šikoparija, B. Radišić, P. Stjepanović, B. Hrga, I. Večenaj, A. Vucić, A. Peroš-Pucar, D. Škorić, T. Ščevková, J. Bastl, M. Berger, U. Magyar, D. |
description | Ragweed Pollen Alarm System (R-PAS) has been running since 2014 to provide pollen information for countries in the Pannonian biogeographical region (PBR). The aim of this study was to develop forecast models of the representative aerobiological monitoring stations, identified by analysis based on a neural network computation. Monitoring stations with 7-day Hirst-type pollen trap having 10-year long validated data set of ragweed pollen were selected for the study from the PBR. Variables including forecasted meteorological data, pollen data of the previous days and nearby monitoring stations were used as input of the model. We used the multilayer perceptron model to forecast the pollen concentration. The multilayer perceptron (MLP) is a feedforward artificial neural network. MLP is a data-driven method to forecast the behaviour of complex systems. In our case, it has three layers, one of which is hidden. MLP utilizes a supervised learning technique called backpropagation for training to get better performance. By testing the neural network, we selected different sets of variables to predict pollen levels for the next 3 days in each of the monitoring stations. The predicted pollen level categories (low–medium–high–very high) are shown on isarithmic map. We used the mean square error, mean absolute error and correlation coefficient metrics to show the forecasting system’s performance. The average of the Pearson correlations is around 0.6 but shows big variability (0.13–0.88) among different locations. Model uncertainty is mainly caused by the limitation of the available input data and the variability in ragweed season patterns. Visualization of the results of the neural network forecast on isarithmic maps is a good tool to communicate pollen information to general public in the PBR. |
doi_str_mv | 10.1007/s10453-019-09615-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2399316268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399316268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b4cf21e192fcb6611341f6690820e4cc2087fcb63eee28c90115aef0d7f521c03</originalsourceid><addsrcrecordid>eNp9kMtKBDEURIMoOD5-wFXAdfQmmU5PliK-QFB8rEM63rStPUmb9DDMP_jRRltw56oWdaoKipAjDiccoD7NHOaVZMA1A614xdZbZMarWjIJotomM5Baskqrapfs5fwGULC6npHPp1ekdhj6ztmxi4FGTy0NuEq2LzKuY3pnjc34QpNt11h0iH2PgfqY0Nk80mZDx1Ly8GvfT_ZZb9OSPm7yiEvahR_k3oYQQ2cDbbrYYmyTHV7LcE8TtmX8gOx422c8_NV98nx58XR-zW7vrm7Oz26Zk0qOrJk7LzhyLbxrlOJczrlXSsNCAM6dE7Covx2JiGLhNHBeWfTwUvtKcAdynxxPvUOKHyvMo3mLqxTKpBFSa8mVUItCiYlyKeac0JshdUubNoaD-X7dTK-b8rr5ed2sS0hOoVzg0GL6q_4n9QWS1YfZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399316268</pqid></control><display><type>article</type><title>The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region</title><source>SpringerLink Journals - AutoHoldings</source><creator>Csépe, Z. ; Leelőssy, Á. ; Mányoki, G. ; Kajtor-Apatini, D. ; Udvardy, O. ; Péter, B. ; Páldy, A. ; Gelybó, G. ; Szigeti, T. ; Pándics, T. ; Kofol-Seliger, A. ; Simčič, A. ; Leru, P. M. ; Eftimie, A.-M. ; Šikoparija, B. ; Radišić, P. ; Stjepanović, B. ; Hrga, I. ; Večenaj, A. ; Vucić, A. ; Peroš-Pucar, D. ; Škorić, T. ; Ščevková, J. ; Bastl, M. ; Berger, U. ; Magyar, D.</creator><creatorcontrib>Csépe, Z. ; Leelőssy, Á. ; Mányoki, G. ; Kajtor-Apatini, D. ; Udvardy, O. ; Péter, B. ; Páldy, A. ; Gelybó, G. ; Szigeti, T. ; Pándics, T. ; Kofol-Seliger, A. ; Simčič, A. ; Leru, P. M. ; Eftimie, A.-M. ; Šikoparija, B. ; Radišić, P. ; Stjepanović, B. ; Hrga, I. ; Večenaj, A. ; Vucić, A. ; Peroš-Pucar, D. ; Škorić, T. ; Ščevková, J. ; Bastl, M. ; Berger, U. ; Magyar, D.</creatorcontrib><description>Ragweed Pollen Alarm System (R-PAS) has been running since 2014 to provide pollen information for countries in the Pannonian biogeographical region (PBR). The aim of this study was to develop forecast models of the representative aerobiological monitoring stations, identified by analysis based on a neural network computation. Monitoring stations with 7-day Hirst-type pollen trap having 10-year long validated data set of ragweed pollen were selected for the study from the PBR. Variables including forecasted meteorological data, pollen data of the previous days and nearby monitoring stations were used as input of the model. We used the multilayer perceptron model to forecast the pollen concentration. The multilayer perceptron (MLP) is a feedforward artificial neural network. MLP is a data-driven method to forecast the behaviour of complex systems. In our case, it has three layers, one of which is hidden. MLP utilizes a supervised learning technique called backpropagation for training to get better performance. By testing the neural network, we selected different sets of variables to predict pollen levels for the next 3 days in each of the monitoring stations. The predicted pollen level categories (low–medium–high–very high) are shown on isarithmic map. We used the mean square error, mean absolute error and correlation coefficient metrics to show the forecasting system’s performance. The average of the Pearson correlations is around 0.6 but shows big variability (0.13–0.88) among different locations. Model uncertainty is mainly caused by the limitation of the available input data and the variability in ragweed season patterns. Visualization of the results of the neural network forecast on isarithmic maps is a good tool to communicate pollen information to general public in the PBR.</description><identifier>ISSN: 0393-5965</identifier><identifier>EISSN: 1573-3025</identifier><identifier>DOI: 10.1007/s10453-019-09615-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Allergology ; Atmospheric Protection/Air Quality Control/Air Pollution ; Earth and Environmental Science ; Environment ; Environmental Engineering/Biotechnology ; Environmental Health ; Neural networks ; Original Paper ; Plant Pathology ; Pneumology/Respiratory System ; Pollen</subject><ispartof>Aerobiologia, 2020-06, Vol.36 (2), p.131-140</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b4cf21e192fcb6611341f6690820e4cc2087fcb63eee28c90115aef0d7f521c03</citedby><cites>FETCH-LOGICAL-c363t-b4cf21e192fcb6611341f6690820e4cc2087fcb63eee28c90115aef0d7f521c03</cites><orcidid>0000-0001-8635-6451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10453-019-09615-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10453-019-09615-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Csépe, Z.</creatorcontrib><creatorcontrib>Leelőssy, Á.</creatorcontrib><creatorcontrib>Mányoki, G.</creatorcontrib><creatorcontrib>Kajtor-Apatini, D.</creatorcontrib><creatorcontrib>Udvardy, O.</creatorcontrib><creatorcontrib>Péter, B.</creatorcontrib><creatorcontrib>Páldy, A.</creatorcontrib><creatorcontrib>Gelybó, G.</creatorcontrib><creatorcontrib>Szigeti, T.</creatorcontrib><creatorcontrib>Pándics, T.</creatorcontrib><creatorcontrib>Kofol-Seliger, A.</creatorcontrib><creatorcontrib>Simčič, A.</creatorcontrib><creatorcontrib>Leru, P. M.</creatorcontrib><creatorcontrib>Eftimie, A.-M.</creatorcontrib><creatorcontrib>Šikoparija, B.</creatorcontrib><creatorcontrib>Radišić, P.</creatorcontrib><creatorcontrib>Stjepanović, B.</creatorcontrib><creatorcontrib>Hrga, I.</creatorcontrib><creatorcontrib>Večenaj, A.</creatorcontrib><creatorcontrib>Vucić, A.</creatorcontrib><creatorcontrib>Peroš-Pucar, D.</creatorcontrib><creatorcontrib>Škorić, T.</creatorcontrib><creatorcontrib>Ščevková, J.</creatorcontrib><creatorcontrib>Bastl, M.</creatorcontrib><creatorcontrib>Berger, U.</creatorcontrib><creatorcontrib>Magyar, D.</creatorcontrib><title>The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region</title><title>Aerobiologia</title><addtitle>Aerobiologia</addtitle><description>Ragweed Pollen Alarm System (R-PAS) has been running since 2014 to provide pollen information for countries in the Pannonian biogeographical region (PBR). The aim of this study was to develop forecast models of the representative aerobiological monitoring stations, identified by analysis based on a neural network computation. Monitoring stations with 7-day Hirst-type pollen trap having 10-year long validated data set of ragweed pollen were selected for the study from the PBR. Variables including forecasted meteorological data, pollen data of the previous days and nearby monitoring stations were used as input of the model. We used the multilayer perceptron model to forecast the pollen concentration. The multilayer perceptron (MLP) is a feedforward artificial neural network. MLP is a data-driven method to forecast the behaviour of complex systems. In our case, it has three layers, one of which is hidden. MLP utilizes a supervised learning technique called backpropagation for training to get better performance. By testing the neural network, we selected different sets of variables to predict pollen levels for the next 3 days in each of the monitoring stations. The predicted pollen level categories (low–medium–high–very high) are shown on isarithmic map. We used the mean square error, mean absolute error and correlation coefficient metrics to show the forecasting system’s performance. The average of the Pearson correlations is around 0.6 but shows big variability (0.13–0.88) among different locations. Model uncertainty is mainly caused by the limitation of the available input data and the variability in ragweed season patterns. Visualization of the results of the neural network forecast on isarithmic maps is a good tool to communicate pollen information to general public in the PBR.</description><subject>Allergology</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Environmental Health</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Plant Pathology</subject><subject>Pneumology/Respiratory System</subject><subject>Pollen</subject><issn>0393-5965</issn><issn>1573-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtKBDEURIMoOD5-wFXAdfQmmU5PliK-QFB8rEM63rStPUmb9DDMP_jRRltw56oWdaoKipAjDiccoD7NHOaVZMA1A614xdZbZMarWjIJotomM5Baskqrapfs5fwGULC6npHPp1ekdhj6ztmxi4FGTy0NuEq2LzKuY3pnjc34QpNt11h0iH2PgfqY0Nk80mZDx1Ly8GvfT_ZZb9OSPm7yiEvahR_k3oYQQ2cDbbrYYmyTHV7LcE8TtmX8gOx422c8_NV98nx58XR-zW7vrm7Oz26Zk0qOrJk7LzhyLbxrlOJczrlXSsNCAM6dE7Covx2JiGLhNHBeWfTwUvtKcAdynxxPvUOKHyvMo3mLqxTKpBFSa8mVUItCiYlyKeac0JshdUubNoaD-X7dTK-b8rr5ed2sS0hOoVzg0GL6q_4n9QWS1YfZ</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Csépe, Z.</creator><creator>Leelőssy, Á.</creator><creator>Mányoki, G.</creator><creator>Kajtor-Apatini, D.</creator><creator>Udvardy, O.</creator><creator>Péter, B.</creator><creator>Páldy, A.</creator><creator>Gelybó, G.</creator><creator>Szigeti, T.</creator><creator>Pándics, T.</creator><creator>Kofol-Seliger, A.</creator><creator>Simčič, A.</creator><creator>Leru, P. M.</creator><creator>Eftimie, A.-M.</creator><creator>Šikoparija, B.</creator><creator>Radišić, P.</creator><creator>Stjepanović, B.</creator><creator>Hrga, I.</creator><creator>Večenaj, A.</creator><creator>Vucić, A.</creator><creator>Peroš-Pucar, D.</creator><creator>Škorić, T.</creator><creator>Ščevková, J.</creator><creator>Bastl, M.</creator><creator>Berger, U.</creator><creator>Magyar, D.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8635-6451</orcidid></search><sort><creationdate>20200601</creationdate><title>The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region</title><author>Csépe, Z. ; Leelőssy, Á. ; Mányoki, G. ; Kajtor-Apatini, D. ; Udvardy, O. ; Péter, B. ; Páldy, A. ; Gelybó, G. ; Szigeti, T. ; Pándics, T. ; Kofol-Seliger, A. ; Simčič, A. ; Leru, P. M. ; Eftimie, A.-M. ; Šikoparija, B. ; Radišić, P. ; Stjepanović, B. ; Hrga, I. ; Večenaj, A. ; Vucić, A. ; Peroš-Pucar, D. ; Škorić, T. ; Ščevková, J. ; Bastl, M. ; Berger, U. ; Magyar, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b4cf21e192fcb6611341f6690820e4cc2087fcb63eee28c90115aef0d7f521c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Allergology</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Environmental Health</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Plant Pathology</topic><topic>Pneumology/Respiratory System</topic><topic>Pollen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Csépe, Z.</creatorcontrib><creatorcontrib>Leelőssy, Á.</creatorcontrib><creatorcontrib>Mányoki, G.</creatorcontrib><creatorcontrib>Kajtor-Apatini, D.</creatorcontrib><creatorcontrib>Udvardy, O.</creatorcontrib><creatorcontrib>Péter, B.</creatorcontrib><creatorcontrib>Páldy, A.</creatorcontrib><creatorcontrib>Gelybó, G.</creatorcontrib><creatorcontrib>Szigeti, T.</creatorcontrib><creatorcontrib>Pándics, T.</creatorcontrib><creatorcontrib>Kofol-Seliger, A.</creatorcontrib><creatorcontrib>Simčič, A.</creatorcontrib><creatorcontrib>Leru, P. M.</creatorcontrib><creatorcontrib>Eftimie, A.-M.</creatorcontrib><creatorcontrib>Šikoparija, B.</creatorcontrib><creatorcontrib>Radišić, P.</creatorcontrib><creatorcontrib>Stjepanović, B.</creatorcontrib><creatorcontrib>Hrga, I.</creatorcontrib><creatorcontrib>Večenaj, A.</creatorcontrib><creatorcontrib>Vucić, A.</creatorcontrib><creatorcontrib>Peroš-Pucar, D.</creatorcontrib><creatorcontrib>Škorić, T.</creatorcontrib><creatorcontrib>Ščevková, J.</creatorcontrib><creatorcontrib>Bastl, M.</creatorcontrib><creatorcontrib>Berger, U.</creatorcontrib><creatorcontrib>Magyar, D.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Aerobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Csépe, Z.</au><au>Leelőssy, Á.</au><au>Mányoki, G.</au><au>Kajtor-Apatini, D.</au><au>Udvardy, O.</au><au>Péter, B.</au><au>Páldy, A.</au><au>Gelybó, G.</au><au>Szigeti, T.</au><au>Pándics, T.</au><au>Kofol-Seliger, A.</au><au>Simčič, A.</au><au>Leru, P. M.</au><au>Eftimie, A.-M.</au><au>Šikoparija, B.</au><au>Radišić, P.</au><au>Stjepanović, B.</au><au>Hrga, I.</au><au>Večenaj, A.</au><au>Vucić, A.</au><au>Peroš-Pucar, D.</au><au>Škorić, T.</au><au>Ščevková, J.</au><au>Bastl, M.</au><au>Berger, U.</au><au>Magyar, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region</atitle><jtitle>Aerobiologia</jtitle><stitle>Aerobiologia</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>36</volume><issue>2</issue><spage>131</spage><epage>140</epage><pages>131-140</pages><issn>0393-5965</issn><eissn>1573-3025</eissn><abstract>Ragweed Pollen Alarm System (R-PAS) has been running since 2014 to provide pollen information for countries in the Pannonian biogeographical region (PBR). The aim of this study was to develop forecast models of the representative aerobiological monitoring stations, identified by analysis based on a neural network computation. Monitoring stations with 7-day Hirst-type pollen trap having 10-year long validated data set of ragweed pollen were selected for the study from the PBR. Variables including forecasted meteorological data, pollen data of the previous days and nearby monitoring stations were used as input of the model. We used the multilayer perceptron model to forecast the pollen concentration. The multilayer perceptron (MLP) is a feedforward artificial neural network. MLP is a data-driven method to forecast the behaviour of complex systems. In our case, it has three layers, one of which is hidden. MLP utilizes a supervised learning technique called backpropagation for training to get better performance. By testing the neural network, we selected different sets of variables to predict pollen levels for the next 3 days in each of the monitoring stations. The predicted pollen level categories (low–medium–high–very high) are shown on isarithmic map. We used the mean square error, mean absolute error and correlation coefficient metrics to show the forecasting system’s performance. The average of the Pearson correlations is around 0.6 but shows big variability (0.13–0.88) among different locations. Model uncertainty is mainly caused by the limitation of the available input data and the variability in ragweed season patterns. Visualization of the results of the neural network forecast on isarithmic maps is a good tool to communicate pollen information to general public in the PBR.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10453-019-09615-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8635-6451</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0393-5965 |
ispartof | Aerobiologia, 2020-06, Vol.36 (2), p.131-140 |
issn | 0393-5965 1573-3025 |
language | eng |
recordid | cdi_proquest_journals_2399316268 |
source | SpringerLink Journals - AutoHoldings |
subjects | Allergology Atmospheric Protection/Air Quality Control/Air Pollution Earth and Environmental Science Environment Environmental Engineering/Biotechnology Environmental Health Neural networks Original Paper Plant Pathology Pneumology/Respiratory System Pollen |
title | The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian biogeographical region |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20application%20of%20a%20neural%20network-based%20ragweed%20pollen%20forecast%20by%20the%20Ragweed%20Pollen%20Alarm%20System%20in%20the%20Pannonian%20biogeographical%20region&rft.jtitle=Aerobiologia&rft.au=Cs%C3%A9pe,%20Z.&rft.date=2020-06-01&rft.volume=36&rft.issue=2&rft.spage=131&rft.epage=140&rft.pages=131-140&rft.issn=0393-5965&rft.eissn=1573-3025&rft_id=info:doi/10.1007/s10453-019-09615-w&rft_dat=%3Cproquest_cross%3E2399316268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399316268&rft_id=info:pmid/&rfr_iscdi=true |