BERT-kNN: Adding a kNN Search Component to Pretrained Language Models for Better QA

Khandelwal et al. (2020) use a k-nearest-neighbor (kNN) component to improve language model performance. We show that this idea is beneficial for open-domain question answering (QA). To improve the recall of facts encountered during training, we combine BERT (Devlin et al., 2019) with a traditional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-10
Hauptverfasser: Kassner, Nora, Schütze, Hinrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kassner, Nora
Schütze, Hinrich
description Khandelwal et al. (2020) use a k-nearest-neighbor (kNN) component to improve language model performance. We show that this idea is beneficial for open-domain question answering (QA). To improve the recall of facts encountered during training, we combine BERT (Devlin et al., 2019) with a traditional information retrieval step (IR) and a kNN search over a large datastore of an embedded text collection. Our contributions are as follows: i) BERT-kNN outperforms BERT on cloze-style QA by large margins without any further training. ii) We show that BERT often identifies the correct response category (e.g., US city), but only kNN recovers the factually correct answer (e.g., "Miami"). iii) Compared to BERT, BERT-kNN excels for rare facts. iv) BERT-kNN can easily handle facts not covered by BERT's training set, e.g., recent events.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2398390037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398390037</sourcerecordid><originalsourceid>FETCH-proquest_journals_23983900373</originalsourceid><addsrcrecordid>eNqNikELgjAYQEcQJOV_-KCzsLZM7aZidKio9C4jP02zzbb5__PQD-j0eLw3Iw7jfOOFW8YWxDWmo5SyXcB8nzskT7J74b0ulz3EVdXKBgRMBjkK_XhCqt6DkigtWAVXjVaLVmIFJyGbUTQIZ1Vhb6BWGhK0FjXc4hWZ16I36P64JOtDVqRHb9DqM6KxZadGLadUMh6FPKKUB_y_6wvY-j27</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398390037</pqid></control><display><type>article</type><title>BERT-kNN: Adding a kNN Search Component to Pretrained Language Models for Better QA</title><source>Free E- Journals</source><creator>Kassner, Nora ; Schütze, Hinrich</creator><creatorcontrib>Kassner, Nora ; Schütze, Hinrich</creatorcontrib><description>Khandelwal et al. (2020) use a k-nearest-neighbor (kNN) component to improve language model performance. We show that this idea is beneficial for open-domain question answering (QA). To improve the recall of facts encountered during training, we combine BERT (Devlin et al., 2019) with a traditional information retrieval step (IR) and a kNN search over a large datastore of an embedded text collection. Our contributions are as follows: i) BERT-kNN outperforms BERT on cloze-style QA by large margins without any further training. ii) We show that BERT often identifies the correct response category (e.g., US city), but only kNN recovers the factually correct answer (e.g., "Miami"). iii) Compared to BERT, BERT-kNN excels for rare facts. iv) BERT-kNN can easily handle facts not covered by BERT's training set, e.g., recent events.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Training</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kassner, Nora</creatorcontrib><creatorcontrib>Schütze, Hinrich</creatorcontrib><title>BERT-kNN: Adding a kNN Search Component to Pretrained Language Models for Better QA</title><title>arXiv.org</title><description>Khandelwal et al. (2020) use a k-nearest-neighbor (kNN) component to improve language model performance. We show that this idea is beneficial for open-domain question answering (QA). To improve the recall of facts encountered during training, we combine BERT (Devlin et al., 2019) with a traditional information retrieval step (IR) and a kNN search over a large datastore of an embedded text collection. Our contributions are as follows: i) BERT-kNN outperforms BERT on cloze-style QA by large margins without any further training. ii) We show that BERT often identifies the correct response category (e.g., US city), but only kNN recovers the factually correct answer (e.g., "Miami"). iii) Compared to BERT, BERT-kNN excels for rare facts. iv) BERT-kNN can easily handle facts not covered by BERT's training set, e.g., recent events.</description><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikELgjAYQEcQJOV_-KCzsLZM7aZidKio9C4jP02zzbb5__PQD-j0eLw3Iw7jfOOFW8YWxDWmo5SyXcB8nzskT7J74b0ulz3EVdXKBgRMBjkK_XhCqt6DkigtWAVXjVaLVmIFJyGbUTQIZ1Vhb6BWGhK0FjXc4hWZ16I36P64JOtDVqRHb9DqM6KxZadGLadUMh6FPKKUB_y_6wvY-j27</recordid><startdate>20201012</startdate><enddate>20201012</enddate><creator>Kassner, Nora</creator><creator>Schütze, Hinrich</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201012</creationdate><title>BERT-kNN: Adding a kNN Search Component to Pretrained Language Models for Better QA</title><author>Kassner, Nora ; Schütze, Hinrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23983900373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Kassner, Nora</creatorcontrib><creatorcontrib>Schütze, Hinrich</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kassner, Nora</au><au>Schütze, Hinrich</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>BERT-kNN: Adding a kNN Search Component to Pretrained Language Models for Better QA</atitle><jtitle>arXiv.org</jtitle><date>2020-10-12</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Khandelwal et al. (2020) use a k-nearest-neighbor (kNN) component to improve language model performance. We show that this idea is beneficial for open-domain question answering (QA). To improve the recall of facts encountered during training, we combine BERT (Devlin et al., 2019) with a traditional information retrieval step (IR) and a kNN search over a large datastore of an embedded text collection. Our contributions are as follows: i) BERT-kNN outperforms BERT on cloze-style QA by large margins without any further training. ii) We show that BERT often identifies the correct response category (e.g., US city), but only kNN recovers the factually correct answer (e.g., "Miami"). iii) Compared to BERT, BERT-kNN excels for rare facts. iv) BERT-kNN can easily handle facts not covered by BERT's training set, e.g., recent events.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2398390037
source Free E- Journals
subjects Training
title BERT-kNN: Adding a kNN Search Component to Pretrained Language Models for Better QA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=BERT-kNN:%20Adding%20a%20kNN%20Search%20Component%20to%20Pretrained%20Language%20Models%20for%20Better%20QA&rft.jtitle=arXiv.org&rft.au=Kassner,%20Nora&rft.date=2020-10-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2398390037%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398390037&rft_id=info:pmid/&rfr_iscdi=true