A-polynomial, B-model, and quantization
A bstract Exact solution to many problems in mathematical physics and quantum field theory often can be expressed in terms of an algebraic curve equipped with a meromorphic differential. Typically, the geometry of the curve can be seen most clearly in a suitable semi-classical limit, as , and become...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2012-02, Vol.2012 (2), Article 70 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | The journal of high energy physics |
container_volume | 2012 |
creator | Gukov, Sergei Sulkowski, Piotr |
description | A
bstract
Exact solution to many problems in mathematical physics and quantum field theory often can be expressed in terms of an algebraic curve equipped with a meromorphic differential. Typically, the geometry of the curve can be seen most clearly in a suitable semi-classical limit, as
, and becomes non-commutative or “quantum” away from this limit. For a classical curve defined by the zero locus of a polynomial
A
(
x, y
), we provide a construction of its non-commutative counterpart
using the technique of the topological recursion. This leads to a powerful and systematic algorithm for computing
that, surprisingly, turns out to be much simpler than any of the existent methods. In particular, as a bonus feature of our approach comes a curious observation that, for all curves that come from knots or topological strings, their non-commutative counterparts can be determined just from the first few steps of the topological recursion. We also propose a K-theory criterion for a curve to be “quantizable,” and then apply our construction to many examples that come from applications to knots, strings, instantons, and random matrices. |
doi_str_mv | 10.1007/JHEP02(2012)070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2398324190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398324190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-16e27b8b443289e649f8e83f5f9e6f328c73d1846720c3426b341f038bf8ab543</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqUws1ZiACRCzx-J7bFUhYIqwQCz5SQ2SpXEqZ0M5a_HVZBgYbp3p_fuTj-ELjHcYwA-f1mv3oDcEMDkFjgcoQkGIhPBuDz-o0_RWQhbAJxiCRN0vUg6V-9b11S6vps9JI0rTRS6LWe7Qbd99aX7yrXn6MTqOpiLnzpFH4-r9-U62bw-PS8Xm6RgmPcJzgzhucgZo0RIkzFphRHUpjY2Ns4KTkssWMYJFJSRLKcMW6Ait0LnKaNTdDXu7bzbDSb0ausG38aTilApKGHx7eiaj67CuxC8sarzVaP9XmFQBxpqpKEONFSkERMwJkJ0tp_G_-79L_INc4BeNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398324190</pqid></control><display><type>article</type><title>A-polynomial, B-model, and quantization</title><source>Springer Nature OA Free Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gukov, Sergei ; Sulkowski, Piotr</creator><creatorcontrib>Gukov, Sergei ; Sulkowski, Piotr</creatorcontrib><description>A
bstract
Exact solution to many problems in mathematical physics and quantum field theory often can be expressed in terms of an algebraic curve equipped with a meromorphic differential. Typically, the geometry of the curve can be seen most clearly in a suitable semi-classical limit, as
, and becomes non-commutative or “quantum” away from this limit. For a classical curve defined by the zero locus of a polynomial
A
(
x, y
), we provide a construction of its non-commutative counterpart
using the technique of the topological recursion. This leads to a powerful and systematic algorithm for computing
that, surprisingly, turns out to be much simpler than any of the existent methods. In particular, as a bonus feature of our approach comes a curious observation that, for all curves that come from knots or topological strings, their non-commutative counterparts can be determined just from the first few steps of the topological recursion. We also propose a K-theory criterion for a curve to be “quantizable,” and then apply our construction to many examples that come from applications to knots, strings, instantons, and random matrices.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP02(2012)070</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Classical and Quantum Gravitation ; Differential geometry ; Elementary Particles ; Exact solutions ; Field theory ; High energy physics ; Instantons ; Knots ; Mathematical analysis ; Matrix methods ; Physics ; Physics and Astronomy ; Polynomials ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Quantum theory ; Relativity Theory ; String Theory ; Strings ; Topology</subject><ispartof>The journal of high energy physics, 2012-02, Vol.2012 (2), Article 70</ispartof><rights>SISSA, Trieste, Italy 2012</rights><rights>SISSA, Trieste, Italy 2012.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-16e27b8b443289e649f8e83f5f9e6f328c73d1846720c3426b341f038bf8ab543</citedby><cites>FETCH-LOGICAL-c417t-16e27b8b443289e649f8e83f5f9e6f328c73d1846720c3426b341f038bf8ab543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP02(2012)070$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP02(2012)070$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41119,41487,42188,42556,51318,51575</link.rule.ids></links><search><creatorcontrib>Gukov, Sergei</creatorcontrib><creatorcontrib>Sulkowski, Piotr</creatorcontrib><title>A-polynomial, B-model, and quantization</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
Exact solution to many problems in mathematical physics and quantum field theory often can be expressed in terms of an algebraic curve equipped with a meromorphic differential. Typically, the geometry of the curve can be seen most clearly in a suitable semi-classical limit, as
, and becomes non-commutative or “quantum” away from this limit. For a classical curve defined by the zero locus of a polynomial
A
(
x, y
), we provide a construction of its non-commutative counterpart
using the technique of the topological recursion. This leads to a powerful and systematic algorithm for computing
that, surprisingly, turns out to be much simpler than any of the existent methods. In particular, as a bonus feature of our approach comes a curious observation that, for all curves that come from knots or topological strings, their non-commutative counterparts can be determined just from the first few steps of the topological recursion. We also propose a K-theory criterion for a curve to be “quantizable,” and then apply our construction to many examples that come from applications to knots, strings, instantons, and random matrices.</description><subject>Algorithms</subject><subject>Classical and Quantum Gravitation</subject><subject>Differential geometry</subject><subject>Elementary Particles</subject><subject>Exact solutions</subject><subject>Field theory</subject><subject>High energy physics</subject><subject>Instantons</subject><subject>Knots</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Quantum theory</subject><subject>Relativity Theory</subject><subject>String Theory</subject><subject>Strings</subject><subject>Topology</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kL1PwzAQxS0EEqUws1ZiACRCzx-J7bFUhYIqwQCz5SQ2SpXEqZ0M5a_HVZBgYbp3p_fuTj-ELjHcYwA-f1mv3oDcEMDkFjgcoQkGIhPBuDz-o0_RWQhbAJxiCRN0vUg6V-9b11S6vps9JI0rTRS6LWe7Qbd99aX7yrXn6MTqOpiLnzpFH4-r9-U62bw-PS8Xm6RgmPcJzgzhucgZo0RIkzFphRHUpjY2Ns4KTkssWMYJFJSRLKcMW6Ait0LnKaNTdDXu7bzbDSb0ausG38aTilApKGHx7eiaj67CuxC8sarzVaP9XmFQBxpqpKEONFSkERMwJkJ0tp_G_-79L_INc4BeNg</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Gukov, Sergei</creator><creator>Sulkowski, Piotr</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20120201</creationdate><title>A-polynomial, B-model, and quantization</title><author>Gukov, Sergei ; Sulkowski, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-16e27b8b443289e649f8e83f5f9e6f328c73d1846720c3426b341f038bf8ab543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Classical and Quantum Gravitation</topic><topic>Differential geometry</topic><topic>Elementary Particles</topic><topic>Exact solutions</topic><topic>Field theory</topic><topic>High energy physics</topic><topic>Instantons</topic><topic>Knots</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Quantum theory</topic><topic>Relativity Theory</topic><topic>String Theory</topic><topic>Strings</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gukov, Sergei</creatorcontrib><creatorcontrib>Sulkowski, Piotr</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gukov, Sergei</au><au>Sulkowski, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A-polynomial, B-model, and quantization</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>2012</volume><issue>2</issue><artnum>70</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
Exact solution to many problems in mathematical physics and quantum field theory often can be expressed in terms of an algebraic curve equipped with a meromorphic differential. Typically, the geometry of the curve can be seen most clearly in a suitable semi-classical limit, as
, and becomes non-commutative or “quantum” away from this limit. For a classical curve defined by the zero locus of a polynomial
A
(
x, y
), we provide a construction of its non-commutative counterpart
using the technique of the topological recursion. This leads to a powerful and systematic algorithm for computing
that, surprisingly, turns out to be much simpler than any of the existent methods. In particular, as a bonus feature of our approach comes a curious observation that, for all curves that come from knots or topological strings, their non-commutative counterparts can be determined just from the first few steps of the topological recursion. We also propose a K-theory criterion for a curve to be “quantizable,” and then apply our construction to many examples that come from applications to knots, strings, instantons, and random matrices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP02(2012)070</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2012-02, Vol.2012 (2), Article 70 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_journals_2398324190 |
source | Springer Nature OA Free Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Classical and Quantum Gravitation Differential geometry Elementary Particles Exact solutions Field theory High energy physics Instantons Knots Mathematical analysis Matrix methods Physics Physics and Astronomy Polynomials Quantum Field Theories Quantum Field Theory Quantum Physics Quantum theory Relativity Theory String Theory Strings Topology |
title | A-polynomial, B-model, and quantization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A-polynomial,%20B-model,%20and%20quantization&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Gukov,%20Sergei&rft.date=2012-02-01&rft.volume=2012&rft.issue=2&rft.artnum=70&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP02(2012)070&rft_dat=%3Cproquest_cross%3E2398324190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398324190&rft_id=info:pmid/&rfr_iscdi=true |