A-polynomial, B-model, and quantization

A bstract Exact solution to many problems in mathematical physics and quantum field theory often can be expressed in terms of an algebraic curve equipped with a meromorphic differential. Typically, the geometry of the curve can be seen most clearly in a suitable semi-classical limit, as , and become...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2012-02, Vol.2012 (2), Article 70
Hauptverfasser: Gukov, Sergei, Sulkowski, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title The journal of high energy physics
container_volume 2012
creator Gukov, Sergei
Sulkowski, Piotr
description A bstract Exact solution to many problems in mathematical physics and quantum field theory often can be expressed in terms of an algebraic curve equipped with a meromorphic differential. Typically, the geometry of the curve can be seen most clearly in a suitable semi-classical limit, as , and becomes non-commutative or “quantum” away from this limit. For a classical curve defined by the zero locus of a polynomial A ( x, y ), we provide a construction of its non-commutative counterpart using the technique of the topological recursion. This leads to a powerful and systematic algorithm for computing that, surprisingly, turns out to be much simpler than any of the existent methods. In particular, as a bonus feature of our approach comes a curious observation that, for all curves that come from knots or topological strings, their non-commutative counterparts can be determined just from the first few steps of the topological recursion. We also propose a K-theory criterion for a curve to be “quantizable,” and then apply our construction to many examples that come from applications to knots, strings, instantons, and random matrices.
doi_str_mv 10.1007/JHEP02(2012)070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2398324190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398324190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-16e27b8b443289e649f8e83f5f9e6f328c73d1846720c3426b341f038bf8ab543</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqUws1ZiACRCzx-J7bFUhYIqwQCz5SQ2SpXEqZ0M5a_HVZBgYbp3p_fuTj-ELjHcYwA-f1mv3oDcEMDkFjgcoQkGIhPBuDz-o0_RWQhbAJxiCRN0vUg6V-9b11S6vps9JI0rTRS6LWe7Qbd99aX7yrXn6MTqOpiLnzpFH4-r9-U62bw-PS8Xm6RgmPcJzgzhucgZo0RIkzFphRHUpjY2Ns4KTkssWMYJFJSRLKcMW6Ait0LnKaNTdDXu7bzbDSb0ausG38aTilApKGHx7eiaj67CuxC8sarzVaP9XmFQBxpqpKEONFSkERMwJkJ0tp_G_-79L_INc4BeNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398324190</pqid></control><display><type>article</type><title>A-polynomial, B-model, and quantization</title><source>Springer Nature OA Free Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gukov, Sergei ; Sulkowski, Piotr</creator><creatorcontrib>Gukov, Sergei ; Sulkowski, Piotr</creatorcontrib><description>A bstract Exact solution to many problems in mathematical physics and quantum field theory often can be expressed in terms of an algebraic curve equipped with a meromorphic differential. Typically, the geometry of the curve can be seen most clearly in a suitable semi-classical limit, as , and becomes non-commutative or “quantum” away from this limit. For a classical curve defined by the zero locus of a polynomial A ( x, y ), we provide a construction of its non-commutative counterpart using the technique of the topological recursion. This leads to a powerful and systematic algorithm for computing that, surprisingly, turns out to be much simpler than any of the existent methods. In particular, as a bonus feature of our approach comes a curious observation that, for all curves that come from knots or topological strings, their non-commutative counterparts can be determined just from the first few steps of the topological recursion. We also propose a K-theory criterion for a curve to be “quantizable,” and then apply our construction to many examples that come from applications to knots, strings, instantons, and random matrices.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP02(2012)070</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Classical and Quantum Gravitation ; Differential geometry ; Elementary Particles ; Exact solutions ; Field theory ; High energy physics ; Instantons ; Knots ; Mathematical analysis ; Matrix methods ; Physics ; Physics and Astronomy ; Polynomials ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Quantum theory ; Relativity Theory ; String Theory ; Strings ; Topology</subject><ispartof>The journal of high energy physics, 2012-02, Vol.2012 (2), Article 70</ispartof><rights>SISSA, Trieste, Italy 2012</rights><rights>SISSA, Trieste, Italy 2012.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-16e27b8b443289e649f8e83f5f9e6f328c73d1846720c3426b341f038bf8ab543</citedby><cites>FETCH-LOGICAL-c417t-16e27b8b443289e649f8e83f5f9e6f328c73d1846720c3426b341f038bf8ab543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP02(2012)070$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP02(2012)070$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41119,41487,42188,42556,51318,51575</link.rule.ids></links><search><creatorcontrib>Gukov, Sergei</creatorcontrib><creatorcontrib>Sulkowski, Piotr</creatorcontrib><title>A-polynomial, B-model, and quantization</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract Exact solution to many problems in mathematical physics and quantum field theory often can be expressed in terms of an algebraic curve equipped with a meromorphic differential. Typically, the geometry of the curve can be seen most clearly in a suitable semi-classical limit, as , and becomes non-commutative or “quantum” away from this limit. For a classical curve defined by the zero locus of a polynomial A ( x, y ), we provide a construction of its non-commutative counterpart using the technique of the topological recursion. This leads to a powerful and systematic algorithm for computing that, surprisingly, turns out to be much simpler than any of the existent methods. In particular, as a bonus feature of our approach comes a curious observation that, for all curves that come from knots or topological strings, their non-commutative counterparts can be determined just from the first few steps of the topological recursion. We also propose a K-theory criterion for a curve to be “quantizable,” and then apply our construction to many examples that come from applications to knots, strings, instantons, and random matrices.</description><subject>Algorithms</subject><subject>Classical and Quantum Gravitation</subject><subject>Differential geometry</subject><subject>Elementary Particles</subject><subject>Exact solutions</subject><subject>Field theory</subject><subject>High energy physics</subject><subject>Instantons</subject><subject>Knots</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Quantum theory</subject><subject>Relativity Theory</subject><subject>String Theory</subject><subject>Strings</subject><subject>Topology</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kL1PwzAQxS0EEqUws1ZiACRCzx-J7bFUhYIqwQCz5SQ2SpXEqZ0M5a_HVZBgYbp3p_fuTj-ELjHcYwA-f1mv3oDcEMDkFjgcoQkGIhPBuDz-o0_RWQhbAJxiCRN0vUg6V-9b11S6vps9JI0rTRS6LWe7Qbd99aX7yrXn6MTqOpiLnzpFH4-r9-U62bw-PS8Xm6RgmPcJzgzhucgZo0RIkzFphRHUpjY2Ns4KTkssWMYJFJSRLKcMW6Ait0LnKaNTdDXu7bzbDSb0ausG38aTilApKGHx7eiaj67CuxC8sarzVaP9XmFQBxpqpKEONFSkERMwJkJ0tp_G_-79L_INc4BeNg</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Gukov, Sergei</creator><creator>Sulkowski, Piotr</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20120201</creationdate><title>A-polynomial, B-model, and quantization</title><author>Gukov, Sergei ; Sulkowski, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-16e27b8b443289e649f8e83f5f9e6f328c73d1846720c3426b341f038bf8ab543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Classical and Quantum Gravitation</topic><topic>Differential geometry</topic><topic>Elementary Particles</topic><topic>Exact solutions</topic><topic>Field theory</topic><topic>High energy physics</topic><topic>Instantons</topic><topic>Knots</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Quantum theory</topic><topic>Relativity Theory</topic><topic>String Theory</topic><topic>Strings</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gukov, Sergei</creatorcontrib><creatorcontrib>Sulkowski, Piotr</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gukov, Sergei</au><au>Sulkowski, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A-polynomial, B-model, and quantization</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>2012</volume><issue>2</issue><artnum>70</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract Exact solution to many problems in mathematical physics and quantum field theory often can be expressed in terms of an algebraic curve equipped with a meromorphic differential. Typically, the geometry of the curve can be seen most clearly in a suitable semi-classical limit, as , and becomes non-commutative or “quantum” away from this limit. For a classical curve defined by the zero locus of a polynomial A ( x, y ), we provide a construction of its non-commutative counterpart using the technique of the topological recursion. This leads to a powerful and systematic algorithm for computing that, surprisingly, turns out to be much simpler than any of the existent methods. In particular, as a bonus feature of our approach comes a curious observation that, for all curves that come from knots or topological strings, their non-commutative counterparts can be determined just from the first few steps of the topological recursion. We also propose a K-theory criterion for a curve to be “quantizable,” and then apply our construction to many examples that come from applications to knots, strings, instantons, and random matrices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP02(2012)070</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2012-02, Vol.2012 (2), Article 70
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_journals_2398324190
source Springer Nature OA Free Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Algorithms
Classical and Quantum Gravitation
Differential geometry
Elementary Particles
Exact solutions
Field theory
High energy physics
Instantons
Knots
Mathematical analysis
Matrix methods
Physics
Physics and Astronomy
Polynomials
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quantum theory
Relativity Theory
String Theory
Strings
Topology
title A-polynomial, B-model, and quantization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A-polynomial,%20B-model,%20and%20quantization&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Gukov,%20Sergei&rft.date=2012-02-01&rft.volume=2012&rft.issue=2&rft.artnum=70&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP02(2012)070&rft_dat=%3Cproquest_cross%3E2398324190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398324190&rft_id=info:pmid/&rfr_iscdi=true