Bounds on 4D conformal and superconformal field theories
We derive general bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and superconformal field theories. In any CFT containing a scalar primary ϕ of dimension d we show that crossing symmetry of implies a completely general lower bound on the central charge c ≥ f c (...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2011-05, Vol.2011 (5), Article 17 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | The journal of high energy physics |
container_volume | 2011 |
creator | Poland, David Simmons-Duffin, David |
description | We derive general bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and
superconformal field theories. In any CFT containing a scalar primary
ϕ
of dimension
d
we show that crossing symmetry of
implies a completely general lower bound on the central charge
c
≥
f
c
(
d
). Similarly, in CFTs containing a complex scalar charged under global symmetries, we bound a combination of symmetry current two-point function coefficients
τ
IJ
and flavor charges. We extend these bounds to
superconformal theories by deriving the superconformal block expansions for four-point functions of a chiral superfield Φ and its conjugate. In this case we derive bounds on the OPE coefficients of scalar operators appearing in the Φ × Φ
†
OPE, and show that there is an upper bound on the dimension of Φ
†
Φ when dim Φ is close to 1. We also present even more stringent bounds on
c
and
τ
IJ
. In supersymmetric gauge theories believed to flow to superconformal fixed points one can use anomaly matching to explicitly check whether these bounds are satisfied. |
doi_str_mv | 10.1007/JHEP05(2011)017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_2398262719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398262719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-f2b5e9a2030612d154647d360b365044bc4782fcdf4045833839e357d79f91733</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUws0ZigSH0zh9xPEJbKKgSDDBbSWxDqjYOdjLw70kVpLIw3en0vO9JDyGXCLcIIGfPq-UriGsKiDeA8ohMEKhKcy7V8Z_9lJzFuAFAgQomJL_3fWNi4puEL5LKN86HXbFNisYksW9tOJxcbbcm6T6tD7WN5-TEFdtoL37nlLw_LN_mq3T98vg0v1unFZNZlzpaCqsKCgwypAYFz7g0LIOSZQI4Lysuc-oq4zhwkTOWM2WZkEYqp1AyNiVXY28b_FdvY6c3vg_N8FJTpnKaUYlqoGYjVQUfY7BOt6HeFeFbI-i9Hj3q0Xs9etAzJGBMxIFsPmw49P4X-QFt9GRe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398262719</pqid></control><display><type>article</type><title>Bounds on 4D conformal and superconformal field theories</title><source>Springer Nature OA Free Journals</source><creator>Poland, David ; Simmons-Duffin, David</creator><creatorcontrib>Poland, David ; Simmons-Duffin, David</creatorcontrib><description>We derive general bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and
superconformal field theories. In any CFT containing a scalar primary
ϕ
of dimension
d
we show that crossing symmetry of
implies a completely general lower bound on the central charge
c
≥
f
c
(
d
). Similarly, in CFTs containing a complex scalar charged under global symmetries, we bound a combination of symmetry current two-point function coefficients
τ
IJ
and flavor charges. We extend these bounds to
superconformal theories by deriving the superconformal block expansions for four-point functions of a chiral superfield Φ and its conjugate. In this case we derive bounds on the OPE coefficients of scalar operators appearing in the Φ × Φ
†
OPE, and show that there is an upper bound on the dimension of Φ
†
Φ when dim Φ is close to 1. We also present even more stringent bounds on
c
and
τ
IJ
. In supersymmetric gauge theories believed to flow to superconformal fixed points one can use anomaly matching to explicitly check whether these bounds are satisfied.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP05(2011)017</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical and Quantum Gravitation ; Coefficients ; Elementary Particles ; High energy physics ; Lower bounds ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory ; Symmetry ; Upper bounds</subject><ispartof>The journal of high energy physics, 2011-05, Vol.2011 (5), Article 17</ispartof><rights>SISSA, Trieste, Italy 2011</rights><rights>SISSA, Trieste, Italy 2011.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-f2b5e9a2030612d154647d360b365044bc4782fcdf4045833839e357d79f91733</citedby><cites>FETCH-LOGICAL-c376t-f2b5e9a2030612d154647d360b365044bc4782fcdf4045833839e357d79f91733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP05(2011)017$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP05(2011)017$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP05(2011)017$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Poland, David</creatorcontrib><creatorcontrib>Simmons-Duffin, David</creatorcontrib><title>Bounds on 4D conformal and superconformal field theories</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>We derive general bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and
superconformal field theories. In any CFT containing a scalar primary
ϕ
of dimension
d
we show that crossing symmetry of
implies a completely general lower bound on the central charge
c
≥
f
c
(
d
). Similarly, in CFTs containing a complex scalar charged under global symmetries, we bound a combination of symmetry current two-point function coefficients
τ
IJ
and flavor charges. We extend these bounds to
superconformal theories by deriving the superconformal block expansions for four-point functions of a chiral superfield Φ and its conjugate. In this case we derive bounds on the OPE coefficients of scalar operators appearing in the Φ × Φ
†
OPE, and show that there is an upper bound on the dimension of Φ
†
Φ when dim Φ is close to 1. We also present even more stringent bounds on
c
and
τ
IJ
. In supersymmetric gauge theories believed to flow to superconformal fixed points one can use anomaly matching to explicitly check whether these bounds are satisfied.</description><subject>Classical and Quantum Gravitation</subject><subject>Coefficients</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Lower bounds</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><subject>Symmetry</subject><subject>Upper bounds</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EEqUws0ZigSH0zh9xPEJbKKgSDDBbSWxDqjYOdjLw70kVpLIw3en0vO9JDyGXCLcIIGfPq-UriGsKiDeA8ohMEKhKcy7V8Z_9lJzFuAFAgQomJL_3fWNi4puEL5LKN86HXbFNisYksW9tOJxcbbcm6T6tD7WN5-TEFdtoL37nlLw_LN_mq3T98vg0v1unFZNZlzpaCqsKCgwypAYFz7g0LIOSZQI4Lysuc-oq4zhwkTOWM2WZkEYqp1AyNiVXY28b_FdvY6c3vg_N8FJTpnKaUYlqoGYjVQUfY7BOt6HeFeFbI-i9Hj3q0Xs9etAzJGBMxIFsPmw49P4X-QFt9GRe</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Poland, David</creator><creator>Simmons-Duffin, David</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110501</creationdate><title>Bounds on 4D conformal and superconformal field theories</title><author>Poland, David ; Simmons-Duffin, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-f2b5e9a2030612d154647d360b365044bc4782fcdf4045833839e357d79f91733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Coefficients</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Lower bounds</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><topic>Symmetry</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poland, David</creatorcontrib><creatorcontrib>Simmons-Duffin, David</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Poland, David</au><au>Simmons-Duffin, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounds on 4D conformal and superconformal field theories</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>2011</volume><issue>5</issue><artnum>17</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>We derive general bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and
superconformal field theories. In any CFT containing a scalar primary
ϕ
of dimension
d
we show that crossing symmetry of
implies a completely general lower bound on the central charge
c
≥
f
c
(
d
). Similarly, in CFTs containing a complex scalar charged under global symmetries, we bound a combination of symmetry current two-point function coefficients
τ
IJ
and flavor charges. We extend these bounds to
superconformal theories by deriving the superconformal block expansions for four-point functions of a chiral superfield Φ and its conjugate. In this case we derive bounds on the OPE coefficients of scalar operators appearing in the Φ × Φ
†
OPE, and show that there is an upper bound on the dimension of Φ
†
Φ when dim Φ is close to 1. We also present even more stringent bounds on
c
and
τ
IJ
. In supersymmetric gauge theories believed to flow to superconformal fixed points one can use anomaly matching to explicitly check whether these bounds are satisfied.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP05(2011)017</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2011-05, Vol.2011 (5), Article 17 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_journals_2398262719 |
source | Springer Nature OA Free Journals |
subjects | Classical and Quantum Gravitation Coefficients Elementary Particles High energy physics Lower bounds Operators (mathematics) Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Relativity Theory String Theory Symmetry Upper bounds |
title | Bounds on 4D conformal and superconformal field theories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A08%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounds%20on%204D%20conformal%20and%20superconformal%20field%20theories&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Poland,%20David&rft.date=2011-05-01&rft.volume=2011&rft.issue=5&rft.artnum=17&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP05(2011)017&rft_dat=%3Cproquest_C6C%3E2398262719%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398262719&rft_id=info:pmid/&rfr_iscdi=true |