Large-θ13 perturbation theory of neutrino oscillation for long-baseline experiments
The Cervera et al. formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter ϵ ≡ ∆ m 21 2 ∆ m 31 2 ≃ 0 . 03 under the 21assumption s 13 ≃ ϵ. If θ 13 is large,...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2011-06, Vol.2011 (6) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | The journal of high energy physics |
container_volume | 2011 |
creator | Asano, Katsuhiro Minakata, Hisakazu |
description | The Cervera
et al.
formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter ϵ ≡ ∆
m
21
2
∆
m
31
2
≃ 0
.
03 under the 21assumption
s
13
≃ ϵ. If
θ
13
is large, as suggested by a candidate
ν
e
event at T2K as well as the recent global analyses, higher order corrections of
s
13
to the formula would be needed for better accuracy. We compute the corrections systematically by formulating a perturbative framework by taking
θ
13
as
, which guarantees its validity in a wide range of
θ
13
below the Chooz limit. We show on general ground that the correction terms must be of order ϵ
2
. Yet, they nicely fill the mismatch between the approximate and the exact formulas at low energies and relatively long baselines. General theorems are derived which serve for better understanding of δ-dependence of the oscillation probability. Some interesting implications of the large
θ
13
hypothesis are discussed. |
doi_str_mv | 10.1007/JHEP06(2011)022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_2398247918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398247918</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1392-3081c0edbccc49761270f21b5a5b2cabded60ab813574b5dc30b2ad62af46ad03</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMguK6evQa86KE6k_TzKMvqKgU9rOeSpNO1S01q0oL-M3-Fv8kuFTzNYZ53hvdh7ALhBgGy26fN-gXSKwGI1yDEEVsgiCLK46w4Yach7AEwwQIWbFsqv6Po5xsl78kPo9dqaJ3lwxs5_8Vdwy2Ng2-t4y6YtuvmdeM875zdRVoF6lpLnD6nfPtOdghn7LhRXaDzv7lkr_fr7WoTlc8Pj6u7MupRFiKSkKMBqrUxJi6yFEUGjUCdqEQLo3RNdQpK5yiTLNZJbSRooepUqCZOVQ1yyS7nu713HyOFodq70dvpZSVkkYupLuYTBTMV-qnGjvw_hVAdfFWzr-rgq5p8yV8JZmGt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398247918</pqid></control><display><type>article</type><title>Large-θ13 perturbation theory of neutrino oscillation for long-baseline experiments</title><source>Springer Nature OA Free Journals</source><creator>Asano, Katsuhiro ; Minakata, Hisakazu</creator><creatorcontrib>Asano, Katsuhiro ; Minakata, Hisakazu</creatorcontrib><description>The Cervera
et al.
formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter ϵ ≡ ∆
m
21
2
∆
m
31
2
≃ 0
.
03 under the 21assumption
s
13
≃ ϵ. If
θ
13
is large, as suggested by a candidate
ν
e
event at T2K as well as the recent global analyses, higher order corrections of
s
13
to the formula would be needed for better accuracy. We compute the corrections systematically by formulating a perturbative framework by taking
θ
13
as
, which guarantees its validity in a wide range of
θ
13
below the Chooz limit. We show on general ground that the correction terms must be of order ϵ
2
. Yet, they nicely fill the mismatch between the approximate and the exact formulas at low energies and relatively long baselines. General theorems are derived which serve for better understanding of δ-dependence of the oscillation probability. Some interesting implications of the large
θ
13
hypothesis are discussed.</description><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP06(2011)022</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical and Quantum Gravitation ; Elementary Particles ; Experiments ; High energy physics ; Neutrinos ; Particle physics ; Perturbation theory ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2011-06, Vol.2011 (6)</ispartof><rights>SISSA, Trieste, Italy 2011</rights><rights>SISSA, Trieste, Italy 2011.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p1392-3081c0edbccc49761270f21b5a5b2cabded60ab813574b5dc30b2ad62af46ad03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP06(2011)022$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP06(2011)022$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP06(2011)022$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Asano, Katsuhiro</creatorcontrib><creatorcontrib>Minakata, Hisakazu</creatorcontrib><title>Large-θ13 perturbation theory of neutrino oscillation for long-baseline experiments</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>The Cervera
et al.
formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter ϵ ≡ ∆
m
21
2
∆
m
31
2
≃ 0
.
03 under the 21assumption
s
13
≃ ϵ. If
θ
13
is large, as suggested by a candidate
ν
e
event at T2K as well as the recent global analyses, higher order corrections of
s
13
to the formula would be needed for better accuracy. We compute the corrections systematically by formulating a perturbative framework by taking
θ
13
as
, which guarantees its validity in a wide range of
θ
13
below the Chooz limit. We show on general ground that the correction terms must be of order ϵ
2
. Yet, they nicely fill the mismatch between the approximate and the exact formulas at low energies and relatively long baselines. General theorems are derived which serve for better understanding of δ-dependence of the oscillation probability. Some interesting implications of the large
θ
13
hypothesis are discussed.</description><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>Experiments</subject><subject>High energy physics</subject><subject>Neutrinos</subject><subject>Particle physics</subject><subject>Perturbation theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFkE1LxDAQhoMguK6evQa86KE6k_TzKMvqKgU9rOeSpNO1S01q0oL-M3-Fv8kuFTzNYZ53hvdh7ALhBgGy26fN-gXSKwGI1yDEEVsgiCLK46w4Yach7AEwwQIWbFsqv6Po5xsl78kPo9dqaJ3lwxs5_8Vdwy2Ng2-t4y6YtuvmdeM875zdRVoF6lpLnD6nfPtOdghn7LhRXaDzv7lkr_fr7WoTlc8Pj6u7MupRFiKSkKMBqrUxJi6yFEUGjUCdqEQLo3RNdQpK5yiTLNZJbSRooepUqCZOVQ1yyS7nu713HyOFodq70dvpZSVkkYupLuYTBTMV-qnGjvw_hVAdfFWzr-rgq5p8yV8JZmGt</recordid><startdate>20110607</startdate><enddate>20110607</enddate><creator>Asano, Katsuhiro</creator><creator>Minakata, Hisakazu</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110607</creationdate><title>Large-θ13 perturbation theory of neutrino oscillation for long-baseline experiments</title><author>Asano, Katsuhiro ; Minakata, Hisakazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1392-3081c0edbccc49761270f21b5a5b2cabded60ab813574b5dc30b2ad62af46ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>Experiments</topic><topic>High energy physics</topic><topic>Neutrinos</topic><topic>Particle physics</topic><topic>Perturbation theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asano, Katsuhiro</creatorcontrib><creatorcontrib>Minakata, Hisakazu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asano, Katsuhiro</au><au>Minakata, Hisakazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-θ13 perturbation theory of neutrino oscillation for long-baseline experiments</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2011-06-07</date><risdate>2011</risdate><volume>2011</volume><issue>6</issue><eissn>1029-8479</eissn><abstract>The Cervera
et al.
formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter ϵ ≡ ∆
m
21
2
∆
m
31
2
≃ 0
.
03 under the 21assumption
s
13
≃ ϵ. If
θ
13
is large, as suggested by a candidate
ν
e
event at T2K as well as the recent global analyses, higher order corrections of
s
13
to the formula would be needed for better accuracy. We compute the corrections systematically by formulating a perturbative framework by taking
θ
13
as
, which guarantees its validity in a wide range of
θ
13
below the Chooz limit. We show on general ground that the correction terms must be of order ϵ
2
. Yet, they nicely fill the mismatch between the approximate and the exact formulas at low energies and relatively long baselines. General theorems are derived which serve for better understanding of δ-dependence of the oscillation probability. Some interesting implications of the large
θ
13
hypothesis are discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP06(2011)022</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2011-06, Vol.2011 (6) |
issn | 1029-8479 |
language | eng |
recordid | cdi_proquest_journals_2398247918 |
source | Springer Nature OA Free Journals |
subjects | Classical and Quantum Gravitation Elementary Particles Experiments High energy physics Neutrinos Particle physics Perturbation theory Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Relativity Theory String Theory |
title | Large-θ13 perturbation theory of neutrino oscillation for long-baseline experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-%CE%B813%20perturbation%20theory%20of%20neutrino%20oscillation%20for%20long-baseline%20experiments&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Asano,%20Katsuhiro&rft.date=2011-06-07&rft.volume=2011&rft.issue=6&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP06(2011)022&rft_dat=%3Cproquest_C6C%3E2398247918%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398247918&rft_id=info:pmid/&rfr_iscdi=true |