Large-θ13 perturbation theory of neutrino oscillation for long-baseline experiments

The Cervera et al. formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter ϵ ≡ ∆ m 21 2 ∆ m 31 2  ≃ 0 . 03 under the 21assumption s 13  ≃ ϵ. If θ 13 is large,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2011-06, Vol.2011 (6)
Hauptverfasser: Asano, Katsuhiro, Minakata, Hisakazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title The journal of high energy physics
container_volume 2011
creator Asano, Katsuhiro
Minakata, Hisakazu
description The Cervera et al. formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter ϵ ≡ ∆ m 21 2 ∆ m 31 2  ≃ 0 . 03 under the 21assumption s 13  ≃ ϵ. If θ 13 is large, as suggested by a candidate ν e event at T2K as well as the recent global analyses, higher order corrections of s 13 to the formula would be needed for better accuracy. We compute the corrections systematically by formulating a perturbative framework by taking θ 13 as , which guarantees its validity in a wide range of θ 13 below the Chooz limit. We show on general ground that the correction terms must be of order ϵ 2 . Yet, they nicely fill the mismatch between the approximate and the exact formulas at low energies and relatively long baselines. General theorems are derived which serve for better understanding of δ-dependence of the oscillation probability. Some interesting implications of the large θ 13 hypothesis are discussed.
doi_str_mv 10.1007/JHEP06(2011)022
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_2398247918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398247918</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1392-3081c0edbccc49761270f21b5a5b2cabded60ab813574b5dc30b2ad62af46ad03</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMguK6evQa86KE6k_TzKMvqKgU9rOeSpNO1S01q0oL-M3-Fv8kuFTzNYZ53hvdh7ALhBgGy26fN-gXSKwGI1yDEEVsgiCLK46w4Yach7AEwwQIWbFsqv6Po5xsl78kPo9dqaJ3lwxs5_8Vdwy2Ng2-t4y6YtuvmdeM875zdRVoF6lpLnD6nfPtOdghn7LhRXaDzv7lkr_fr7WoTlc8Pj6u7MupRFiKSkKMBqrUxJi6yFEUGjUCdqEQLo3RNdQpK5yiTLNZJbSRooepUqCZOVQ1yyS7nu713HyOFodq70dvpZSVkkYupLuYTBTMV-qnGjvw_hVAdfFWzr-rgq5p8yV8JZmGt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398247918</pqid></control><display><type>article</type><title>Large-θ13 perturbation theory of neutrino oscillation for long-baseline experiments</title><source>Springer Nature OA Free Journals</source><creator>Asano, Katsuhiro ; Minakata, Hisakazu</creator><creatorcontrib>Asano, Katsuhiro ; Minakata, Hisakazu</creatorcontrib><description>The Cervera et al. formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter ϵ ≡ ∆ m 21 2 ∆ m 31 2  ≃ 0 . 03 under the 21assumption s 13  ≃ ϵ. If θ 13 is large, as suggested by a candidate ν e event at T2K as well as the recent global analyses, higher order corrections of s 13 to the formula would be needed for better accuracy. We compute the corrections systematically by formulating a perturbative framework by taking θ 13 as , which guarantees its validity in a wide range of θ 13 below the Chooz limit. We show on general ground that the correction terms must be of order ϵ 2 . Yet, they nicely fill the mismatch between the approximate and the exact formulas at low energies and relatively long baselines. General theorems are derived which serve for better understanding of δ-dependence of the oscillation probability. Some interesting implications of the large θ 13 hypothesis are discussed.</description><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP06(2011)022</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical and Quantum Gravitation ; Elementary Particles ; Experiments ; High energy physics ; Neutrinos ; Particle physics ; Perturbation theory ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2011-06, Vol.2011 (6)</ispartof><rights>SISSA, Trieste, Italy 2011</rights><rights>SISSA, Trieste, Italy 2011.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p1392-3081c0edbccc49761270f21b5a5b2cabded60ab813574b5dc30b2ad62af46ad03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP06(2011)022$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP06(2011)022$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP06(2011)022$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Asano, Katsuhiro</creatorcontrib><creatorcontrib>Minakata, Hisakazu</creatorcontrib><title>Large-θ13 perturbation theory of neutrino oscillation for long-baseline experiments</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>The Cervera et al. formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter ϵ ≡ ∆ m 21 2 ∆ m 31 2  ≃ 0 . 03 under the 21assumption s 13  ≃ ϵ. If θ 13 is large, as suggested by a candidate ν e event at T2K as well as the recent global analyses, higher order corrections of s 13 to the formula would be needed for better accuracy. We compute the corrections systematically by formulating a perturbative framework by taking θ 13 as , which guarantees its validity in a wide range of θ 13 below the Chooz limit. We show on general ground that the correction terms must be of order ϵ 2 . Yet, they nicely fill the mismatch between the approximate and the exact formulas at low energies and relatively long baselines. General theorems are derived which serve for better understanding of δ-dependence of the oscillation probability. Some interesting implications of the large θ 13 hypothesis are discussed.</description><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>Experiments</subject><subject>High energy physics</subject><subject>Neutrinos</subject><subject>Particle physics</subject><subject>Perturbation theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFkE1LxDAQhoMguK6evQa86KE6k_TzKMvqKgU9rOeSpNO1S01q0oL-M3-Fv8kuFTzNYZ53hvdh7ALhBgGy26fN-gXSKwGI1yDEEVsgiCLK46w4Yach7AEwwQIWbFsqv6Po5xsl78kPo9dqaJ3lwxs5_8Vdwy2Ng2-t4y6YtuvmdeM875zdRVoF6lpLnD6nfPtOdghn7LhRXaDzv7lkr_fr7WoTlc8Pj6u7MupRFiKSkKMBqrUxJi6yFEUGjUCdqEQLo3RNdQpK5yiTLNZJbSRooepUqCZOVQ1yyS7nu713HyOFodq70dvpZSVkkYupLuYTBTMV-qnGjvw_hVAdfFWzr-rgq5p8yV8JZmGt</recordid><startdate>20110607</startdate><enddate>20110607</enddate><creator>Asano, Katsuhiro</creator><creator>Minakata, Hisakazu</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110607</creationdate><title>Large-θ13 perturbation theory of neutrino oscillation for long-baseline experiments</title><author>Asano, Katsuhiro ; Minakata, Hisakazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1392-3081c0edbccc49761270f21b5a5b2cabded60ab813574b5dc30b2ad62af46ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>Experiments</topic><topic>High energy physics</topic><topic>Neutrinos</topic><topic>Particle physics</topic><topic>Perturbation theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asano, Katsuhiro</creatorcontrib><creatorcontrib>Minakata, Hisakazu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asano, Katsuhiro</au><au>Minakata, Hisakazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-θ13 perturbation theory of neutrino oscillation for long-baseline experiments</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2011-06-07</date><risdate>2011</risdate><volume>2011</volume><issue>6</issue><eissn>1029-8479</eissn><abstract>The Cervera et al. formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter ϵ ≡ ∆ m 21 2 ∆ m 31 2  ≃ 0 . 03 under the 21assumption s 13  ≃ ϵ. If θ 13 is large, as suggested by a candidate ν e event at T2K as well as the recent global analyses, higher order corrections of s 13 to the formula would be needed for better accuracy. We compute the corrections systematically by formulating a perturbative framework by taking θ 13 as , which guarantees its validity in a wide range of θ 13 below the Chooz limit. We show on general ground that the correction terms must be of order ϵ 2 . Yet, they nicely fill the mismatch between the approximate and the exact formulas at low energies and relatively long baselines. General theorems are derived which serve for better understanding of δ-dependence of the oscillation probability. Some interesting implications of the large θ 13 hypothesis are discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP06(2011)022</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1029-8479
ispartof The journal of high energy physics, 2011-06, Vol.2011 (6)
issn 1029-8479
language eng
recordid cdi_proquest_journals_2398247918
source Springer Nature OA Free Journals
subjects Classical and Quantum Gravitation
Elementary Particles
Experiments
High energy physics
Neutrinos
Particle physics
Perturbation theory
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
String Theory
title Large-θ13 perturbation theory of neutrino oscillation for long-baseline experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-%CE%B813%20perturbation%20theory%20of%20neutrino%20oscillation%20for%20long-baseline%20experiments&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Asano,%20Katsuhiro&rft.date=2011-06-07&rft.volume=2011&rft.issue=6&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP06(2011)022&rft_dat=%3Cproquest_C6C%3E2398247918%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398247918&rft_id=info:pmid/&rfr_iscdi=true