Diagonal deformations of thin center vortices and their stability in Yang-Mills theories

The importance of center vortices for the understanding of the confining properties of SU( N ) Yang-Mills theories is well established in the lattice. However, in the continuum, there is a problem concerning the relevance of thick center vortex backgrounds. They display the so called Savvidy-Nielsen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2011-07, Vol.2011 (7), Article 78
1. Verfasser: Oxman, L. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title The journal of high energy physics
container_volume 2011
creator Oxman, L. E.
description The importance of center vortices for the understanding of the confining properties of SU( N ) Yang-Mills theories is well established in the lattice. However, in the continuum, there is a problem concerning the relevance of thick center vortex backgrounds. They display the so called Savvidy-Nielsen-Olesen instability, associated with a gyromagnetic ratio g m ( b )  = 2 for the off-diagonal gluons. In this work, we initially consider the usual definition of a thin center vortex and rewrite it in terms of a local color frame in SU( N ) Yang-Mills theories. Then, we define a thick object as a diagonal deformation of the thin center vortex. Besides the usual thick background profile, this deformation also contains a frame defect coupled with gyromagnetic ratio g m ( d )  = 1. As a consequence, the analysis of stability is modified. In particular, we point out that the defect should stabilize a vortex configuration formed by a pair of straight components with opposite fluxes, separated by an appropriate finite distance.
doi_str_mv 10.1007/JHEP07(2011)078
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_2398231420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398231420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-a23b9be07bb913ebd3e593a7014df8e3ee52f4eb8db45e9ea40d2489d8ca43703</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKtnrwEvelg7-Vh2c5T6UaWiBwU9hWR3tqZsNzVJhf57d6mgF08zMM_7wjyEnDK4ZADF5GF28wzFOQfGLqAo98iIAVdZKQu1_2c_JEcxLgFYzhSMyNu1MwvfmZbW2PiwMsn5LlLf0PThOlphlzDQLx-SqzBS09X9AV2gMRnrWpe2tMfeTbfIHl3bxuHqg8N4TA4a00Y8-Zlj8np78zKdZfOnu_vp1TyrBIOUGS6ssgiFtYoJtLXAXAlTAJN1U6JAzHkj0Za1lTkqNBJqLktVl5WRogAxJme73nXwnxuMSS_9JvQPRc2FKrlgkg_UZEdVwccYsNHr4FYmbDUDPejTO3160Kd7fX0CdonYk90Cw2_vf5FvoTpy5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398231420</pqid></control><display><type>article</type><title>Diagonal deformations of thin center vortices and their stability in Yang-Mills theories</title><source>Springer Nature OA Free Journals</source><creator>Oxman, L. E.</creator><creatorcontrib>Oxman, L. E.</creatorcontrib><description>The importance of center vortices for the understanding of the confining properties of SU( N ) Yang-Mills theories is well established in the lattice. However, in the continuum, there is a problem concerning the relevance of thick center vortex backgrounds. They display the so called Savvidy-Nielsen-Olesen instability, associated with a gyromagnetic ratio g m ( b )  = 2 for the off-diagonal gluons. In this work, we initially consider the usual definition of a thin center vortex and rewrite it in terms of a local color frame in SU( N ) Yang-Mills theories. Then, we define a thick object as a diagonal deformation of the thin center vortex. Besides the usual thick background profile, this deformation also contains a frame defect coupled with gyromagnetic ratio g m ( d )  = 1. As a consequence, the analysis of stability is modified. In particular, we point out that the defect should stabilize a vortex configuration formed by a pair of straight components with opposite fluxes, separated by an appropriate finite distance.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP07(2011)078</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical and Quantum Gravitation ; Deformation ; Elementary Particles ; Fluxes ; Gluons ; Gyromagnetic ratio ; High energy physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Stability analysis ; String Theory ; Vortices</subject><ispartof>The journal of high energy physics, 2011-07, Vol.2011 (7), Article 78</ispartof><rights>SISSA, Trieste, Italy 2011</rights><rights>SISSA, Trieste, Italy 2011.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-a23b9be07bb913ebd3e593a7014df8e3ee52f4eb8db45e9ea40d2489d8ca43703</citedby><cites>FETCH-LOGICAL-c310t-a23b9be07bb913ebd3e593a7014df8e3ee52f4eb8db45e9ea40d2489d8ca43703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP07(2011)078$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP07(2011)078$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41099,41467,42168,42536,51297,51554</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP07(2011)078$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Oxman, L. E.</creatorcontrib><title>Diagonal deformations of thin center vortices and their stability in Yang-Mills theories</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>The importance of center vortices for the understanding of the confining properties of SU( N ) Yang-Mills theories is well established in the lattice. However, in the continuum, there is a problem concerning the relevance of thick center vortex backgrounds. They display the so called Savvidy-Nielsen-Olesen instability, associated with a gyromagnetic ratio g m ( b )  = 2 for the off-diagonal gluons. In this work, we initially consider the usual definition of a thin center vortex and rewrite it in terms of a local color frame in SU( N ) Yang-Mills theories. Then, we define a thick object as a diagonal deformation of the thin center vortex. Besides the usual thick background profile, this deformation also contains a frame defect coupled with gyromagnetic ratio g m ( d )  = 1. As a consequence, the analysis of stability is modified. In particular, we point out that the defect should stabilize a vortex configuration formed by a pair of straight components with opposite fluxes, separated by an appropriate finite distance.</description><subject>Classical and Quantum Gravitation</subject><subject>Deformation</subject><subject>Elementary Particles</subject><subject>Fluxes</subject><subject>Gluons</subject><subject>Gyromagnetic ratio</subject><subject>High energy physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Stability analysis</subject><subject>String Theory</subject><subject>Vortices</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWKtnrwEvelg7-Vh2c5T6UaWiBwU9hWR3tqZsNzVJhf57d6mgF08zMM_7wjyEnDK4ZADF5GF28wzFOQfGLqAo98iIAVdZKQu1_2c_JEcxLgFYzhSMyNu1MwvfmZbW2PiwMsn5LlLf0PThOlphlzDQLx-SqzBS09X9AV2gMRnrWpe2tMfeTbfIHl3bxuHqg8N4TA4a00Y8-Zlj8np78zKdZfOnu_vp1TyrBIOUGS6ssgiFtYoJtLXAXAlTAJN1U6JAzHkj0Za1lTkqNBJqLktVl5WRogAxJme73nXwnxuMSS_9JvQPRc2FKrlgkg_UZEdVwccYsNHr4FYmbDUDPejTO3160Kd7fX0CdonYk90Cw2_vf5FvoTpy5w</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Oxman, L. E.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110701</creationdate><title>Diagonal deformations of thin center vortices and their stability in Yang-Mills theories</title><author>Oxman, L. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-a23b9be07bb913ebd3e593a7014df8e3ee52f4eb8db45e9ea40d2489d8ca43703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Deformation</topic><topic>Elementary Particles</topic><topic>Fluxes</topic><topic>Gluons</topic><topic>Gyromagnetic ratio</topic><topic>High energy physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Stability analysis</topic><topic>String Theory</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oxman, L. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oxman, L. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagonal deformations of thin center vortices and their stability in Yang-Mills theories</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>2011</volume><issue>7</issue><artnum>78</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>The importance of center vortices for the understanding of the confining properties of SU( N ) Yang-Mills theories is well established in the lattice. However, in the continuum, there is a problem concerning the relevance of thick center vortex backgrounds. They display the so called Savvidy-Nielsen-Olesen instability, associated with a gyromagnetic ratio g m ( b )  = 2 for the off-diagonal gluons. In this work, we initially consider the usual definition of a thin center vortex and rewrite it in terms of a local color frame in SU( N ) Yang-Mills theories. Then, we define a thick object as a diagonal deformation of the thin center vortex. Besides the usual thick background profile, this deformation also contains a frame defect coupled with gyromagnetic ratio g m ( d )  = 1. As a consequence, the analysis of stability is modified. In particular, we point out that the defect should stabilize a vortex configuration formed by a pair of straight components with opposite fluxes, separated by an appropriate finite distance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP07(2011)078</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2011-07, Vol.2011 (7), Article 78
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_journals_2398231420
source Springer Nature OA Free Journals
subjects Classical and Quantum Gravitation
Deformation
Elementary Particles
Fluxes
Gluons
Gyromagnetic ratio
High energy physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
Stability analysis
String Theory
Vortices
title Diagonal deformations of thin center vortices and their stability in Yang-Mills theories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagonal%20deformations%20of%20thin%20center%20vortices%20and%20their%20stability%20in%20Yang-Mills%20theories&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Oxman,%20L.%20E.&rft.date=2011-07-01&rft.volume=2011&rft.issue=7&rft.artnum=78&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP07(2011)078&rft_dat=%3Cproquest_C6C%3E2398231420%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398231420&rft_id=info:pmid/&rfr_iscdi=true