Quantitative and qualitative estimates on the norm of products of polynomials

When for the first time, in 1987, a Banach space X and a bounded operator T : X → X without nontrivial invariant subspaces was constructed, one of the many tools used was a series of estimates on the norm of a product of polynomials. Here, we continue this study of estimates on the norm of a product...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2020-03, Vol.236 (2), p.727-745
Hauptverfasser: Araújo, Gustavo, Enflo, Per H., Muñoz-Fernández, Gustavo A., Rodríguez-Vidanes, Daniel L., Seoane-Sepúlveda, Juan B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 745
container_issue 2
container_start_page 727
container_title Israel journal of mathematics
container_volume 236
creator Araújo, Gustavo
Enflo, Per H.
Muñoz-Fernández, Gustavo A.
Rodríguez-Vidanes, Daniel L.
Seoane-Sepúlveda, Juan B.
description When for the first time, in 1987, a Banach space X and a bounded operator T : X → X without nontrivial invariant subspaces was constructed, one of the many tools used was a series of estimates on the norm of a product of polynomials. Here, we continue this study of estimates on the norm of a product of polynomials by, on the one hand, extending some results due to Beauzamy and Enflo and, on the other, observing that an inequality by Borwein and Erdelyi holds in a more general context.
doi_str_mv 10.1007/s11856-020-1987-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2398225431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398225431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7490f45178d2513c329ce5e8f5813e8677998670d345eebbdbc7499a28918fb33</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHP0Uyy2SRHKWqFigh6DvuR1S1t0iZZYf-9qat48jJvBt6befMQugR6DZTKmwigREkoowS0kmQ8QjMQpSBKAByjGaUMCAPJTtFZjGtKBZfAZ-jpZahc6lOV-k-LK9fi_VBtfmcbU7-tko3YO5w-LHY-bLHv8C74dmhS_O79ZnR-21ebeI5Ougz24gfn6O3-7nWxJKvnh8fF7Yo0HMpEZKFpVwiQqmUCeMOZbqywqhMKuFWllFrnSlteCGvruq2bLNEVUxpUV3M-R1fT3uxjP2SXZu2H4PJJw7hWjImCQ2bBxGqCjzHYzuxCfieMBqg5pGam1ExOzRxSM2PWsEkTM9e92_C3-X_RF_fgcAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398225431</pqid></control><display><type>article</type><title>Quantitative and qualitative estimates on the norm of products of polynomials</title><source>Springer journals</source><creator>Araújo, Gustavo ; Enflo, Per H. ; Muñoz-Fernández, Gustavo A. ; Rodríguez-Vidanes, Daniel L. ; Seoane-Sepúlveda, Juan B.</creator><creatorcontrib>Araújo, Gustavo ; Enflo, Per H. ; Muñoz-Fernández, Gustavo A. ; Rodríguez-Vidanes, Daniel L. ; Seoane-Sepúlveda, Juan B.</creatorcontrib><description>When for the first time, in 1987, a Banach space X and a bounded operator T : X → X without nontrivial invariant subspaces was constructed, one of the many tools used was a series of estimates on the norm of a product of polynomials. Here, we continue this study of estimates on the norm of a product of polynomials by, on the one hand, extending some results due to Beauzamy and Enflo and, on the other, observing that an inequality by Borwein and Erdelyi holds in a more general context.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-020-1987-y</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Banach spaces ; Estimates ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Polynomials ; Subspaces ; Theoretical</subject><ispartof>Israel journal of mathematics, 2020-03, Vol.236 (2), p.727-745</ispartof><rights>The Hebrew University of Jerusalem 2020</rights><rights>The Hebrew University of Jerusalem 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7490f45178d2513c329ce5e8f5813e8677998670d345eebbdbc7499a28918fb33</citedby><cites>FETCH-LOGICAL-c316t-7490f45178d2513c329ce5e8f5813e8677998670d345eebbdbc7499a28918fb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-020-1987-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-020-1987-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Araújo, Gustavo</creatorcontrib><creatorcontrib>Enflo, Per H.</creatorcontrib><creatorcontrib>Muñoz-Fernández, Gustavo A.</creatorcontrib><creatorcontrib>Rodríguez-Vidanes, Daniel L.</creatorcontrib><creatorcontrib>Seoane-Sepúlveda, Juan B.</creatorcontrib><title>Quantitative and qualitative estimates on the norm of products of polynomials</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>When for the first time, in 1987, a Banach space X and a bounded operator T : X → X without nontrivial invariant subspaces was constructed, one of the many tools used was a series of estimates on the norm of a product of polynomials. Here, we continue this study of estimates on the norm of a product of polynomials by, on the one hand, extending some results due to Beauzamy and Enflo and, on the other, observing that an inequality by Borwein and Erdelyi holds in a more general context.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Banach spaces</subject><subject>Estimates</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Subspaces</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHP0Uyy2SRHKWqFigh6DvuR1S1t0iZZYf-9qat48jJvBt6befMQugR6DZTKmwigREkoowS0kmQ8QjMQpSBKAByjGaUMCAPJTtFZjGtKBZfAZ-jpZahc6lOV-k-LK9fi_VBtfmcbU7-tko3YO5w-LHY-bLHv8C74dmhS_O79ZnR-21ebeI5Ougz24gfn6O3-7nWxJKvnh8fF7Yo0HMpEZKFpVwiQqmUCeMOZbqywqhMKuFWllFrnSlteCGvruq2bLNEVUxpUV3M-R1fT3uxjP2SXZu2H4PJJw7hWjImCQ2bBxGqCjzHYzuxCfieMBqg5pGam1ExOzRxSM2PWsEkTM9e92_C3-X_RF_fgcAM</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Araújo, Gustavo</creator><creator>Enflo, Per H.</creator><creator>Muñoz-Fernández, Gustavo A.</creator><creator>Rodríguez-Vidanes, Daniel L.</creator><creator>Seoane-Sepúlveda, Juan B.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Quantitative and qualitative estimates on the norm of products of polynomials</title><author>Araújo, Gustavo ; Enflo, Per H. ; Muñoz-Fernández, Gustavo A. ; Rodríguez-Vidanes, Daniel L. ; Seoane-Sepúlveda, Juan B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7490f45178d2513c329ce5e8f5813e8677998670d345eebbdbc7499a28918fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Banach spaces</topic><topic>Estimates</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Subspaces</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araújo, Gustavo</creatorcontrib><creatorcontrib>Enflo, Per H.</creatorcontrib><creatorcontrib>Muñoz-Fernández, Gustavo A.</creatorcontrib><creatorcontrib>Rodríguez-Vidanes, Daniel L.</creatorcontrib><creatorcontrib>Seoane-Sepúlveda, Juan B.</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araújo, Gustavo</au><au>Enflo, Per H.</au><au>Muñoz-Fernández, Gustavo A.</au><au>Rodríguez-Vidanes, Daniel L.</au><au>Seoane-Sepúlveda, Juan B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative and qualitative estimates on the norm of products of polynomials</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>236</volume><issue>2</issue><spage>727</spage><epage>745</epage><pages>727-745</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>When for the first time, in 1987, a Banach space X and a bounded operator T : X → X without nontrivial invariant subspaces was constructed, one of the many tools used was a series of estimates on the norm of a product of polynomials. Here, we continue this study of estimates on the norm of a product of polynomials by, on the one hand, extending some results due to Beauzamy and Enflo and, on the other, observing that an inequality by Borwein and Erdelyi holds in a more general context.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-020-1987-y</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2020-03, Vol.236 (2), p.727-745
issn 0021-2172
1565-8511
language eng
recordid cdi_proquest_journals_2398225431
source Springer journals
subjects Algebra
Analysis
Applications of Mathematics
Banach spaces
Estimates
Group Theory and Generalizations
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Polynomials
Subspaces
Theoretical
title Quantitative and qualitative estimates on the norm of products of polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20and%20qualitative%20estimates%20on%20the%20norm%20of%20products%20of%20polynomials&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Ara%C3%BAjo,%20Gustavo&rft.date=2020-03-01&rft.volume=236&rft.issue=2&rft.spage=727&rft.epage=745&rft.pages=727-745&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-020-1987-y&rft_dat=%3Cproquest_cross%3E2398225431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398225431&rft_id=info:pmid/&rfr_iscdi=true