Quantitative and qualitative estimates on the norm of products of polynomials
When for the first time, in 1987, a Banach space X and a bounded operator T : X → X without nontrivial invariant subspaces was constructed, one of the many tools used was a series of estimates on the norm of a product of polynomials. Here, we continue this study of estimates on the norm of a product...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2020-03, Vol.236 (2), p.727-745 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 745 |
---|---|
container_issue | 2 |
container_start_page | 727 |
container_title | Israel journal of mathematics |
container_volume | 236 |
creator | Araújo, Gustavo Enflo, Per H. Muñoz-Fernández, Gustavo A. Rodríguez-Vidanes, Daniel L. Seoane-Sepúlveda, Juan B. |
description | When for the first time, in 1987, a Banach space
X
and a bounded operator
T
:
X
→
X
without nontrivial invariant subspaces was constructed, one of the many tools used was a series of estimates on the norm of a product of polynomials. Here, we continue this study of estimates on the norm of a product of polynomials by, on the one hand, extending some results due to Beauzamy and Enflo and, on the other, observing that an inequality by Borwein and Erdelyi holds in a more general context. |
doi_str_mv | 10.1007/s11856-020-1987-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2398225431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398225431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7490f45178d2513c329ce5e8f5813e8677998670d345eebbdbc7499a28918fb33</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHP0Uyy2SRHKWqFigh6DvuR1S1t0iZZYf-9qat48jJvBt6befMQugR6DZTKmwigREkoowS0kmQ8QjMQpSBKAByjGaUMCAPJTtFZjGtKBZfAZ-jpZahc6lOV-k-LK9fi_VBtfmcbU7-tko3YO5w-LHY-bLHv8C74dmhS_O79ZnR-21ebeI5Ougz24gfn6O3-7nWxJKvnh8fF7Yo0HMpEZKFpVwiQqmUCeMOZbqywqhMKuFWllFrnSlteCGvruq2bLNEVUxpUV3M-R1fT3uxjP2SXZu2H4PJJw7hWjImCQ2bBxGqCjzHYzuxCfieMBqg5pGam1ExOzRxSM2PWsEkTM9e92_C3-X_RF_fgcAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398225431</pqid></control><display><type>article</type><title>Quantitative and qualitative estimates on the norm of products of polynomials</title><source>Springer journals</source><creator>Araújo, Gustavo ; Enflo, Per H. ; Muñoz-Fernández, Gustavo A. ; Rodríguez-Vidanes, Daniel L. ; Seoane-Sepúlveda, Juan B.</creator><creatorcontrib>Araújo, Gustavo ; Enflo, Per H. ; Muñoz-Fernández, Gustavo A. ; Rodríguez-Vidanes, Daniel L. ; Seoane-Sepúlveda, Juan B.</creatorcontrib><description>When for the first time, in 1987, a Banach space
X
and a bounded operator
T
:
X
→
X
without nontrivial invariant subspaces was constructed, one of the many tools used was a series of estimates on the norm of a product of polynomials. Here, we continue this study of estimates on the norm of a product of polynomials by, on the one hand, extending some results due to Beauzamy and Enflo and, on the other, observing that an inequality by Borwein and Erdelyi holds in a more general context.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-020-1987-y</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Banach spaces ; Estimates ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Polynomials ; Subspaces ; Theoretical</subject><ispartof>Israel journal of mathematics, 2020-03, Vol.236 (2), p.727-745</ispartof><rights>The Hebrew University of Jerusalem 2020</rights><rights>The Hebrew University of Jerusalem 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7490f45178d2513c329ce5e8f5813e8677998670d345eebbdbc7499a28918fb33</citedby><cites>FETCH-LOGICAL-c316t-7490f45178d2513c329ce5e8f5813e8677998670d345eebbdbc7499a28918fb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-020-1987-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-020-1987-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Araújo, Gustavo</creatorcontrib><creatorcontrib>Enflo, Per H.</creatorcontrib><creatorcontrib>Muñoz-Fernández, Gustavo A.</creatorcontrib><creatorcontrib>Rodríguez-Vidanes, Daniel L.</creatorcontrib><creatorcontrib>Seoane-Sepúlveda, Juan B.</creatorcontrib><title>Quantitative and qualitative estimates on the norm of products of polynomials</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>When for the first time, in 1987, a Banach space
X
and a bounded operator
T
:
X
→
X
without nontrivial invariant subspaces was constructed, one of the many tools used was a series of estimates on the norm of a product of polynomials. Here, we continue this study of estimates on the norm of a product of polynomials by, on the one hand, extending some results due to Beauzamy and Enflo and, on the other, observing that an inequality by Borwein and Erdelyi holds in a more general context.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Banach spaces</subject><subject>Estimates</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Subspaces</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHP0Uyy2SRHKWqFigh6DvuR1S1t0iZZYf-9qat48jJvBt6befMQugR6DZTKmwigREkoowS0kmQ8QjMQpSBKAByjGaUMCAPJTtFZjGtKBZfAZ-jpZahc6lOV-k-LK9fi_VBtfmcbU7-tko3YO5w-LHY-bLHv8C74dmhS_O79ZnR-21ebeI5Ougz24gfn6O3-7nWxJKvnh8fF7Yo0HMpEZKFpVwiQqmUCeMOZbqywqhMKuFWllFrnSlteCGvruq2bLNEVUxpUV3M-R1fT3uxjP2SXZu2H4PJJw7hWjImCQ2bBxGqCjzHYzuxCfieMBqg5pGam1ExOzRxSM2PWsEkTM9e92_C3-X_RF_fgcAM</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Araújo, Gustavo</creator><creator>Enflo, Per H.</creator><creator>Muñoz-Fernández, Gustavo A.</creator><creator>Rodríguez-Vidanes, Daniel L.</creator><creator>Seoane-Sepúlveda, Juan B.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Quantitative and qualitative estimates on the norm of products of polynomials</title><author>Araújo, Gustavo ; Enflo, Per H. ; Muñoz-Fernández, Gustavo A. ; Rodríguez-Vidanes, Daniel L. ; Seoane-Sepúlveda, Juan B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7490f45178d2513c329ce5e8f5813e8677998670d345eebbdbc7499a28918fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Banach spaces</topic><topic>Estimates</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Subspaces</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araújo, Gustavo</creatorcontrib><creatorcontrib>Enflo, Per H.</creatorcontrib><creatorcontrib>Muñoz-Fernández, Gustavo A.</creatorcontrib><creatorcontrib>Rodríguez-Vidanes, Daniel L.</creatorcontrib><creatorcontrib>Seoane-Sepúlveda, Juan B.</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araújo, Gustavo</au><au>Enflo, Per H.</au><au>Muñoz-Fernández, Gustavo A.</au><au>Rodríguez-Vidanes, Daniel L.</au><au>Seoane-Sepúlveda, Juan B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative and qualitative estimates on the norm of products of polynomials</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>236</volume><issue>2</issue><spage>727</spage><epage>745</epage><pages>727-745</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>When for the first time, in 1987, a Banach space
X
and a bounded operator
T
:
X
→
X
without nontrivial invariant subspaces was constructed, one of the many tools used was a series of estimates on the norm of a product of polynomials. Here, we continue this study of estimates on the norm of a product of polynomials by, on the one hand, extending some results due to Beauzamy and Enflo and, on the other, observing that an inequality by Borwein and Erdelyi holds in a more general context.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-020-1987-y</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2020-03, Vol.236 (2), p.727-745 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_proquest_journals_2398225431 |
source | Springer journals |
subjects | Algebra Analysis Applications of Mathematics Banach spaces Estimates Group Theory and Generalizations Mathematical and Computational Physics Mathematics Mathematics and Statistics Polynomials Subspaces Theoretical |
title | Quantitative and qualitative estimates on the norm of products of polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20and%20qualitative%20estimates%20on%20the%20norm%20of%20products%20of%20polynomials&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Ara%C3%BAjo,%20Gustavo&rft.date=2020-03-01&rft.volume=236&rft.issue=2&rft.spage=727&rft.epage=745&rft.pages=727-745&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-020-1987-y&rft_dat=%3Cproquest_cross%3E2398225431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398225431&rft_id=info:pmid/&rfr_iscdi=true |