Bilateral murine tumor models for characterizing the response to immune checkpoint blockade
The therapeutic response to immune checkpoint blockade (ICB) is highly variable, not only between different cancers but also between patients with the same cancer type. The biological mechanisms underlying these differences in response are incompletely understood. Identifying correlates in patient t...
Gespeichert in:
Veröffentlicht in: | Nature protocols 2020-05, Vol.15 (5), p.1628-1648 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1648 |
---|---|
container_issue | 5 |
container_start_page | 1628 |
container_title | Nature protocols |
container_volume | 15 |
creator | Zemek, Rachael M. Fear, Vanessa S. Forbes, Cath de Jong, Emma Casey, Thomas H. Boon, Louis Lassmann, Timo Bosco, Anthony Millward, Michael J. Nowak, Anna K. Lake, Richard A. Lesterhuis, W. Joost |
description | The therapeutic response to immune checkpoint blockade (ICB) is highly variable, not only between different cancers but also between patients with the same cancer type. The biological mechanisms underlying these differences in response are incompletely understood. Identifying correlates in patient tumor samples is challenging because of genetic and environmental variability. Murine studies usually compare different tumor models or treatments, introducing potential confounding variables. This protocol describes bilateral murine tumor models, derived from syngeneic cancer cell lines, that display a symmetrical yet dichotomous response to ICB. These models enable detailed analysis of whole tumors in a highly homogeneous background, combined with knowledge of the therapeutic outcome within a few weeks, and could potentially be used for mechanistic studies using other (immuno-)therapies. We discuss key considerations and describe how to use two cell lines as fully optimized models. We discuss experimental details, including proper inoculation technique to achieve symmetry and one-sided surgical tumor removal, which takes only 5 min per mouse. Furthermore, we outline the preparation of bulk tissue or single-cell suspensions for downstream analyses such as bulk RNA-seq, immunohistochemistry, single-cell RNA-seq and flow cytometry.
In this protocol, mice are inoculated with two separate tumors derived from the same cell line. One tumor is removed and assessed before treatment; the other is used to assess the effect of treatment. |
doi_str_mv | 10.1038/s41596-020-0299-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2398125103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622748239</galeid><sourcerecordid>A622748239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-cec889bebd634aa89d576cd0016bacf2018e49fe7dfd654759cd38b9a301bb6e3</originalsourceid><addsrcrecordid>eNqN0l1r1TAYB_AiipvTD-CNFLxRpDMvTZNczoMvg4Hgy5UXIU2enpOtTY5Jipuf3tQzN46o2FIayu-fPnl4quoxRscYUfEytZjJrkEElUfKht6pDjFnqCFcyrs_121DsJAH1YOUzhFqOe34_eqAEkKFZPSw-vLKjTpD1GM9zdF5qPM8hVhPwcKY6qEszUZHbYpx351f13kDdYS0DT4VHGo3TXOJmQ2Yi21wPtf9GMyFtvCwujfoMcGj6_dR9fnN60-rd83Z-7enq5OzxrCO58aAEUL20NuOtloLaRnvjEUId702A0FYQCsH4HawHWs5k8ZS0UtNEe77DuhR9Wy37zaGrzOkrCaXDIyj9hDmpMpZGUcSM1To09_oeZijL9Up0vJWSow5_aeiUmDCSvtv1VqPoJwfQi59Wn6tTjpCeCsKLur4D6rcFiZngofBle97ged7gWIyXOa1nlNSpx8_7Fu8syaGlCIMahvdpOOVwkgtI6J2I6LKiKhlRNRS9pPrw839BPYm8WsmCnixA9-gD0MyDryBG4YQYoQIxNBykaLF_-uVyzq74Fdh9rlEyS6aCvdriLdt_nv5PwA4Y-TT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398125103</pqid></control><display><type>article</type><title>Bilateral murine tumor models for characterizing the response to immune checkpoint blockade</title><source>MEDLINE</source><source>Nature</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Zemek, Rachael M. ; Fear, Vanessa S. ; Forbes, Cath ; de Jong, Emma ; Casey, Thomas H. ; Boon, Louis ; Lassmann, Timo ; Bosco, Anthony ; Millward, Michael J. ; Nowak, Anna K. ; Lake, Richard A. ; Lesterhuis, W. Joost</creator><creatorcontrib>Zemek, Rachael M. ; Fear, Vanessa S. ; Forbes, Cath ; de Jong, Emma ; Casey, Thomas H. ; Boon, Louis ; Lassmann, Timo ; Bosco, Anthony ; Millward, Michael J. ; Nowak, Anna K. ; Lake, Richard A. ; Lesterhuis, W. Joost</creatorcontrib><description>The therapeutic response to immune checkpoint blockade (ICB) is highly variable, not only between different cancers but also between patients with the same cancer type. The biological mechanisms underlying these differences in response are incompletely understood. Identifying correlates in patient tumor samples is challenging because of genetic and environmental variability. Murine studies usually compare different tumor models or treatments, introducing potential confounding variables. This protocol describes bilateral murine tumor models, derived from syngeneic cancer cell lines, that display a symmetrical yet dichotomous response to ICB. These models enable detailed analysis of whole tumors in a highly homogeneous background, combined with knowledge of the therapeutic outcome within a few weeks, and could potentially be used for mechanistic studies using other (immuno-)therapies. We discuss key considerations and describe how to use two cell lines as fully optimized models. We discuss experimental details, including proper inoculation technique to achieve symmetry and one-sided surgical tumor removal, which takes only 5 min per mouse. Furthermore, we outline the preparation of bulk tissue or single-cell suspensions for downstream analyses such as bulk RNA-seq, immunohistochemistry, single-cell RNA-seq and flow cytometry.
In this protocol, mice are inoculated with two separate tumors derived from the same cell line. One tumor is removed and assessed before treatment; the other is used to assess the effect of treatment.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/s41596-020-0299-3</identifier><identifier>PMID: 32238953</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/767/70 ; 631/250/580 ; 631/67/327 ; 692/308/1426 ; Analysis ; Analytical Chemistry ; Animal models ; Animals ; Antineoplastic Agents, Immunological ; Biochemical Research Methods ; Biochemistry & Molecular Biology ; Biological Techniques ; Biomedical and Life Sciences ; Biotechnology ; Cancer ; Care and treatment ; Cell Line, Tumor ; Cell suspensions ; Computational Biology/Bioinformatics ; Drug Screening Assays, Antitumor ; Female ; Flow cytometry ; Immune checkpoint ; Immune response ; Immunohistochemistry ; Inoculation ; Life Sciences ; Life Sciences & Biomedicine ; Mice ; Mice, Inbred BALB C ; Microarrays ; Neoplasms, Experimental ; Organic Chemistry ; Patient outcomes ; Physiological aspects ; Protocol ; Ribonucleic acid ; RNA ; Science & Technology ; Tumor cell lines ; Tumors</subject><ispartof>Nature protocols, 2020-05, Vol.15 (5), p.1628-1648</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>20</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000522805000002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c567t-cec889bebd634aa89d576cd0016bacf2018e49fe7dfd654759cd38b9a301bb6e3</citedby><cites>FETCH-LOGICAL-c567t-cec889bebd634aa89d576cd0016bacf2018e49fe7dfd654759cd38b9a301bb6e3</cites><orcidid>0000-0002-3522-005X ; 0000-0002-9317-9526 ; 0000-0002-0976-6163 ; 0000-0002-2718-276X ; 0000-0002-0138-2691 ; 0000-0002-4335-615X ; 0000-0002-2501-6119 ; 0000-0001-8363-6685 ; 0000-0002-0937-9171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932,28255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32238953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zemek, Rachael M.</creatorcontrib><creatorcontrib>Fear, Vanessa S.</creatorcontrib><creatorcontrib>Forbes, Cath</creatorcontrib><creatorcontrib>de Jong, Emma</creatorcontrib><creatorcontrib>Casey, Thomas H.</creatorcontrib><creatorcontrib>Boon, Louis</creatorcontrib><creatorcontrib>Lassmann, Timo</creatorcontrib><creatorcontrib>Bosco, Anthony</creatorcontrib><creatorcontrib>Millward, Michael J.</creatorcontrib><creatorcontrib>Nowak, Anna K.</creatorcontrib><creatorcontrib>Lake, Richard A.</creatorcontrib><creatorcontrib>Lesterhuis, W. Joost</creatorcontrib><title>Bilateral murine tumor models for characterizing the response to immune checkpoint blockade</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>NAT PROTOC</addtitle><addtitle>Nat Protoc</addtitle><description>The therapeutic response to immune checkpoint blockade (ICB) is highly variable, not only between different cancers but also between patients with the same cancer type. The biological mechanisms underlying these differences in response are incompletely understood. Identifying correlates in patient tumor samples is challenging because of genetic and environmental variability. Murine studies usually compare different tumor models or treatments, introducing potential confounding variables. This protocol describes bilateral murine tumor models, derived from syngeneic cancer cell lines, that display a symmetrical yet dichotomous response to ICB. These models enable detailed analysis of whole tumors in a highly homogeneous background, combined with knowledge of the therapeutic outcome within a few weeks, and could potentially be used for mechanistic studies using other (immuno-)therapies. We discuss key considerations and describe how to use two cell lines as fully optimized models. We discuss experimental details, including proper inoculation technique to achieve symmetry and one-sided surgical tumor removal, which takes only 5 min per mouse. Furthermore, we outline the preparation of bulk tissue or single-cell suspensions for downstream analyses such as bulk RNA-seq, immunohistochemistry, single-cell RNA-seq and flow cytometry.
In this protocol, mice are inoculated with two separate tumors derived from the same cell line. One tumor is removed and assessed before treatment; the other is used to assess the effect of treatment.</description><subject>631/1647/767/70</subject><subject>631/250/580</subject><subject>631/67/327</subject><subject>692/308/1426</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antineoplastic Agents, Immunological</subject><subject>Biochemical Research Methods</subject><subject>Biochemistry & Molecular Biology</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell Line, Tumor</subject><subject>Cell suspensions</subject><subject>Computational Biology/Bioinformatics</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Female</subject><subject>Flow cytometry</subject><subject>Immune checkpoint</subject><subject>Immune response</subject><subject>Immunohistochemistry</subject><subject>Inoculation</subject><subject>Life Sciences</subject><subject>Life Sciences & Biomedicine</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Microarrays</subject><subject>Neoplasms, Experimental</subject><subject>Organic Chemistry</subject><subject>Patient outcomes</subject><subject>Physiological aspects</subject><subject>Protocol</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science & Technology</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0l1r1TAYB_AiipvTD-CNFLxRpDMvTZNczoMvg4Hgy5UXIU2enpOtTY5Jipuf3tQzN46o2FIayu-fPnl4quoxRscYUfEytZjJrkEElUfKht6pDjFnqCFcyrs_121DsJAH1YOUzhFqOe34_eqAEkKFZPSw-vLKjTpD1GM9zdF5qPM8hVhPwcKY6qEszUZHbYpx351f13kDdYS0DT4VHGo3TXOJmQ2Yi21wPtf9GMyFtvCwujfoMcGj6_dR9fnN60-rd83Z-7enq5OzxrCO58aAEUL20NuOtloLaRnvjEUId702A0FYQCsH4HawHWs5k8ZS0UtNEe77DuhR9Wy37zaGrzOkrCaXDIyj9hDmpMpZGUcSM1To09_oeZijL9Up0vJWSow5_aeiUmDCSvtv1VqPoJwfQi59Wn6tTjpCeCsKLur4D6rcFiZngofBle97ged7gWIyXOa1nlNSpx8_7Fu8syaGlCIMahvdpOOVwkgtI6J2I6LKiKhlRNRS9pPrw839BPYm8WsmCnixA9-gD0MyDryBG4YQYoQIxNBykaLF_-uVyzq74Fdh9rlEyS6aCvdriLdt_nv5PwA4Y-TT</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zemek, Rachael M.</creator><creator>Fear, Vanessa S.</creator><creator>Forbes, Cath</creator><creator>de Jong, Emma</creator><creator>Casey, Thomas H.</creator><creator>Boon, Louis</creator><creator>Lassmann, Timo</creator><creator>Bosco, Anthony</creator><creator>Millward, Michael J.</creator><creator>Nowak, Anna K.</creator><creator>Lake, Richard A.</creator><creator>Lesterhuis, W. Joost</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3522-005X</orcidid><orcidid>https://orcid.org/0000-0002-9317-9526</orcidid><orcidid>https://orcid.org/0000-0002-0976-6163</orcidid><orcidid>https://orcid.org/0000-0002-2718-276X</orcidid><orcidid>https://orcid.org/0000-0002-0138-2691</orcidid><orcidid>https://orcid.org/0000-0002-4335-615X</orcidid><orcidid>https://orcid.org/0000-0002-2501-6119</orcidid><orcidid>https://orcid.org/0000-0001-8363-6685</orcidid><orcidid>https://orcid.org/0000-0002-0937-9171</orcidid></search><sort><creationdate>20200501</creationdate><title>Bilateral murine tumor models for characterizing the response to immune checkpoint blockade</title><author>Zemek, Rachael M. ; Fear, Vanessa S. ; Forbes, Cath ; de Jong, Emma ; Casey, Thomas H. ; Boon, Louis ; Lassmann, Timo ; Bosco, Anthony ; Millward, Michael J. ; Nowak, Anna K. ; Lake, Richard A. ; Lesterhuis, W. Joost</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-cec889bebd634aa89d576cd0016bacf2018e49fe7dfd654759cd38b9a301bb6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/1647/767/70</topic><topic>631/250/580</topic><topic>631/67/327</topic><topic>692/308/1426</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antineoplastic Agents, Immunological</topic><topic>Biochemical Research Methods</topic><topic>Biochemistry & Molecular Biology</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell Line, Tumor</topic><topic>Cell suspensions</topic><topic>Computational Biology/Bioinformatics</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Female</topic><topic>Flow cytometry</topic><topic>Immune checkpoint</topic><topic>Immune response</topic><topic>Immunohistochemistry</topic><topic>Inoculation</topic><topic>Life Sciences</topic><topic>Life Sciences & Biomedicine</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Microarrays</topic><topic>Neoplasms, Experimental</topic><topic>Organic Chemistry</topic><topic>Patient outcomes</topic><topic>Physiological aspects</topic><topic>Protocol</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science & Technology</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zemek, Rachael M.</creatorcontrib><creatorcontrib>Fear, Vanessa S.</creatorcontrib><creatorcontrib>Forbes, Cath</creatorcontrib><creatorcontrib>de Jong, Emma</creatorcontrib><creatorcontrib>Casey, Thomas H.</creatorcontrib><creatorcontrib>Boon, Louis</creatorcontrib><creatorcontrib>Lassmann, Timo</creatorcontrib><creatorcontrib>Bosco, Anthony</creatorcontrib><creatorcontrib>Millward, Michael J.</creatorcontrib><creatorcontrib>Nowak, Anna K.</creatorcontrib><creatorcontrib>Lake, Richard A.</creatorcontrib><creatorcontrib>Lesterhuis, W. Joost</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zemek, Rachael M.</au><au>Fear, Vanessa S.</au><au>Forbes, Cath</au><au>de Jong, Emma</au><au>Casey, Thomas H.</au><au>Boon, Louis</au><au>Lassmann, Timo</au><au>Bosco, Anthony</au><au>Millward, Michael J.</au><au>Nowak, Anna K.</au><au>Lake, Richard A.</au><au>Lesterhuis, W. Joost</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilateral murine tumor models for characterizing the response to immune checkpoint blockade</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><stitle>NAT PROTOC</stitle><addtitle>Nat Protoc</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>15</volume><issue>5</issue><spage>1628</spage><epage>1648</epage><pages>1628-1648</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>The therapeutic response to immune checkpoint blockade (ICB) is highly variable, not only between different cancers but also between patients with the same cancer type. The biological mechanisms underlying these differences in response are incompletely understood. Identifying correlates in patient tumor samples is challenging because of genetic and environmental variability. Murine studies usually compare different tumor models or treatments, introducing potential confounding variables. This protocol describes bilateral murine tumor models, derived from syngeneic cancer cell lines, that display a symmetrical yet dichotomous response to ICB. These models enable detailed analysis of whole tumors in a highly homogeneous background, combined with knowledge of the therapeutic outcome within a few weeks, and could potentially be used for mechanistic studies using other (immuno-)therapies. We discuss key considerations and describe how to use two cell lines as fully optimized models. We discuss experimental details, including proper inoculation technique to achieve symmetry and one-sided surgical tumor removal, which takes only 5 min per mouse. Furthermore, we outline the preparation of bulk tissue or single-cell suspensions for downstream analyses such as bulk RNA-seq, immunohistochemistry, single-cell RNA-seq and flow cytometry.
In this protocol, mice are inoculated with two separate tumors derived from the same cell line. One tumor is removed and assessed before treatment; the other is used to assess the effect of treatment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32238953</pmid><doi>10.1038/s41596-020-0299-3</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-3522-005X</orcidid><orcidid>https://orcid.org/0000-0002-9317-9526</orcidid><orcidid>https://orcid.org/0000-0002-0976-6163</orcidid><orcidid>https://orcid.org/0000-0002-2718-276X</orcidid><orcidid>https://orcid.org/0000-0002-0138-2691</orcidid><orcidid>https://orcid.org/0000-0002-4335-615X</orcidid><orcidid>https://orcid.org/0000-0002-2501-6119</orcidid><orcidid>https://orcid.org/0000-0001-8363-6685</orcidid><orcidid>https://orcid.org/0000-0002-0937-9171</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-2189 |
ispartof | Nature protocols, 2020-05, Vol.15 (5), p.1628-1648 |
issn | 1754-2189 1750-2799 |
language | eng |
recordid | cdi_proquest_journals_2398125103 |
source | MEDLINE; Nature; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | 631/1647/767/70 631/250/580 631/67/327 692/308/1426 Analysis Analytical Chemistry Animal models Animals Antineoplastic Agents, Immunological Biochemical Research Methods Biochemistry & Molecular Biology Biological Techniques Biomedical and Life Sciences Biotechnology Cancer Care and treatment Cell Line, Tumor Cell suspensions Computational Biology/Bioinformatics Drug Screening Assays, Antitumor Female Flow cytometry Immune checkpoint Immune response Immunohistochemistry Inoculation Life Sciences Life Sciences & Biomedicine Mice Mice, Inbred BALB C Microarrays Neoplasms, Experimental Organic Chemistry Patient outcomes Physiological aspects Protocol Ribonucleic acid RNA Science & Technology Tumor cell lines Tumors |
title | Bilateral murine tumor models for characterizing the response to immune checkpoint blockade |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilateral%20murine%20tumor%20models%20for%20characterizing%20the%20response%20to%20immune%20checkpoint%20blockade&rft.jtitle=Nature%20protocols&rft.au=Zemek,%20Rachael%20M.&rft.date=2020-05-01&rft.volume=15&rft.issue=5&rft.spage=1628&rft.epage=1648&rft.pages=1628-1648&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/s41596-020-0299-3&rft_dat=%3Cgale_proqu%3EA622748239%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398125103&rft_id=info:pmid/32238953&rft_galeid=A622748239&rfr_iscdi=true |