MSSM forecast for the LHC

We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental valu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2010-05, Vol.2010 (5), Article 43
Hauptverfasser: Cabrera, Maria Eugenia, Casas, J. Alberto, de Austri, Roberto Ruiz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title The journal of high energy physics
container_volume 2010
creator Cabrera, Maria Eugenia
Casas, J. Alberto
de Austri, Roberto Ruiz
description We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of M Z is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on e + e − data) is considered, the preferred region (for μ > 0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative- μ possibilities.
doi_str_mv 10.1007/JHEP05(2010)043
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_2398094025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398094025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-71dd8e63ae69b112bb68a1180d716de89f0fd12142a9f9281e35a35ecc8cd9123</originalsourceid><addsrcrecordid>eNp1j79PwzAQhS0EEqUwI7ZILDCE3tn5YY-oKgSUCqTCbDn2GaigKXY68N-TKEiwMN0b3vdOH2OnCFcIUM7uq8Uj5BccEC4hE3tsgsBVKrNS7f_Jh-woxjUA5qhgws6Wq9Uy8W0ga2I3hKR7paSu5sfswJv3SCc_d8qebxZP8yqtH27v5td1agVCl5bonKRCGCpUg8ibppAGUYIrsXAklQfvkGPGjfKKSySRG5GTtdI6hVxM2fm4uw3t545ip9ftLmz6l5oLJUFlwPO-NRtbNrQxBvJ6G94-TPjSCHrw16O_Hvx1798TMBKxb25eKPzu_od8AycwWSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398094025</pqid></control><display><type>article</type><title>MSSM forecast for the LHC</title><source>Springer Nature OA Free Journals</source><creator>Cabrera, Maria Eugenia ; Casas, J. Alberto ; de Austri, Roberto Ruiz</creator><creatorcontrib>Cabrera, Maria Eugenia ; Casas, J. Alberto ; de Austri, Roberto Ruiz</creatorcontrib><description>We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of M Z is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on e + e − data) is considered, the preferred region (for μ &gt; 0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative- μ possibilities.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP05(2010)043</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Bayesian analysis ; Classical and Quantum Gravitation ; Dark matter ; Elementary Particles ; High energy physics ; Parameters ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Robustness ; Statistical analysis ; String Theory</subject><ispartof>The journal of high energy physics, 2010-05, Vol.2010 (5), Article 43</ispartof><rights>SISSA, Trieste, Italy 2010</rights><rights>SISSA, Trieste, Italy 2010.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-71dd8e63ae69b112bb68a1180d716de89f0fd12142a9f9281e35a35ecc8cd9123</citedby><cites>FETCH-LOGICAL-c310t-71dd8e63ae69b112bb68a1180d716de89f0fd12142a9f9281e35a35ecc8cd9123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP05(2010)043$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP05(2010)043$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41119,41487,42188,42556,51318,51575</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP05(2010)043$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Cabrera, Maria Eugenia</creatorcontrib><creatorcontrib>Casas, J. Alberto</creatorcontrib><creatorcontrib>de Austri, Roberto Ruiz</creatorcontrib><title>MSSM forecast for the LHC</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of M Z is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on e + e − data) is considered, the preferred region (for μ &gt; 0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative- μ possibilities.</description><subject>Bayesian analysis</subject><subject>Classical and Quantum Gravitation</subject><subject>Dark matter</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Robustness</subject><subject>Statistical analysis</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1j79PwzAQhS0EEqUwI7ZILDCE3tn5YY-oKgSUCqTCbDn2GaigKXY68N-TKEiwMN0b3vdOH2OnCFcIUM7uq8Uj5BccEC4hE3tsgsBVKrNS7f_Jh-woxjUA5qhgws6Wq9Uy8W0ga2I3hKR7paSu5sfswJv3SCc_d8qebxZP8yqtH27v5td1agVCl5bonKRCGCpUg8ibppAGUYIrsXAklQfvkGPGjfKKSySRG5GTtdI6hVxM2fm4uw3t545ip9ftLmz6l5oLJUFlwPO-NRtbNrQxBvJ6G94-TPjSCHrw16O_Hvx1798TMBKxb25eKPzu_od8AycwWSc</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Cabrera, Maria Eugenia</creator><creator>Casas, J. Alberto</creator><creator>de Austri, Roberto Ruiz</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20100501</creationdate><title>MSSM forecast for the LHC</title><author>Cabrera, Maria Eugenia ; Casas, J. Alberto ; de Austri, Roberto Ruiz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-71dd8e63ae69b112bb68a1180d716de89f0fd12142a9f9281e35a35ecc8cd9123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayesian analysis</topic><topic>Classical and Quantum Gravitation</topic><topic>Dark matter</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Robustness</topic><topic>Statistical analysis</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabrera, Maria Eugenia</creatorcontrib><creatorcontrib>Casas, J. Alberto</creatorcontrib><creatorcontrib>de Austri, Roberto Ruiz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cabrera, Maria Eugenia</au><au>Casas, J. Alberto</au><au>de Austri, Roberto Ruiz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MSSM forecast for the LHC</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>2010</volume><issue>5</issue><artnum>43</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of M Z is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on e + e − data) is considered, the preferred region (for μ &gt; 0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative- μ possibilities.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP05(2010)043</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2010-05, Vol.2010 (5), Article 43
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_journals_2398094025
source Springer Nature OA Free Journals
subjects Bayesian analysis
Classical and Quantum Gravitation
Dark matter
Elementary Particles
High energy physics
Parameters
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
Robustness
Statistical analysis
String Theory
title MSSM forecast for the LHC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MSSM%20forecast%20for%20the%20LHC&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Cabrera,%20Maria%20Eugenia&rft.date=2010-05-01&rft.volume=2010&rft.issue=5&rft.artnum=43&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP05(2010)043&rft_dat=%3Cproquest_C6C%3E2398094025%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398094025&rft_id=info:pmid/&rfr_iscdi=true