MSSM forecast for the LHC
We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental valu...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2010-05, Vol.2010 (5), Article 43 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | The journal of high energy physics |
container_volume | 2010 |
creator | Cabrera, Maria Eugenia Casas, J. Alberto de Austri, Roberto Ruiz |
description | We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of
M
Z
is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on
e
+
e
−
data) is considered, the preferred region (for
μ
> 0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative-
μ
possibilities. |
doi_str_mv | 10.1007/JHEP05(2010)043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_2398094025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398094025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-71dd8e63ae69b112bb68a1180d716de89f0fd12142a9f9281e35a35ecc8cd9123</originalsourceid><addsrcrecordid>eNp1j79PwzAQhS0EEqUwI7ZILDCE3tn5YY-oKgSUCqTCbDn2GaigKXY68N-TKEiwMN0b3vdOH2OnCFcIUM7uq8Uj5BccEC4hE3tsgsBVKrNS7f_Jh-woxjUA5qhgws6Wq9Uy8W0ga2I3hKR7paSu5sfswJv3SCc_d8qebxZP8yqtH27v5td1agVCl5bonKRCGCpUg8ibppAGUYIrsXAklQfvkGPGjfKKSySRG5GTtdI6hVxM2fm4uw3t545ip9ftLmz6l5oLJUFlwPO-NRtbNrQxBvJ6G94-TPjSCHrw16O_Hvx1798TMBKxb25eKPzu_od8AycwWSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398094025</pqid></control><display><type>article</type><title>MSSM forecast for the LHC</title><source>Springer Nature OA Free Journals</source><creator>Cabrera, Maria Eugenia ; Casas, J. Alberto ; de Austri, Roberto Ruiz</creator><creatorcontrib>Cabrera, Maria Eugenia ; Casas, J. Alberto ; de Austri, Roberto Ruiz</creatorcontrib><description>We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of
M
Z
is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on
e
+
e
−
data) is considered, the preferred region (for
μ
> 0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative-
μ
possibilities.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP05(2010)043</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Bayesian analysis ; Classical and Quantum Gravitation ; Dark matter ; Elementary Particles ; High energy physics ; Parameters ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Robustness ; Statistical analysis ; String Theory</subject><ispartof>The journal of high energy physics, 2010-05, Vol.2010 (5), Article 43</ispartof><rights>SISSA, Trieste, Italy 2010</rights><rights>SISSA, Trieste, Italy 2010.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-71dd8e63ae69b112bb68a1180d716de89f0fd12142a9f9281e35a35ecc8cd9123</citedby><cites>FETCH-LOGICAL-c310t-71dd8e63ae69b112bb68a1180d716de89f0fd12142a9f9281e35a35ecc8cd9123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP05(2010)043$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP05(2010)043$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41119,41487,42188,42556,51318,51575</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP05(2010)043$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Cabrera, Maria Eugenia</creatorcontrib><creatorcontrib>Casas, J. Alberto</creatorcontrib><creatorcontrib>de Austri, Roberto Ruiz</creatorcontrib><title>MSSM forecast for the LHC</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of
M
Z
is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on
e
+
e
−
data) is considered, the preferred region (for
μ
> 0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative-
μ
possibilities.</description><subject>Bayesian analysis</subject><subject>Classical and Quantum Gravitation</subject><subject>Dark matter</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Robustness</subject><subject>Statistical analysis</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1j79PwzAQhS0EEqUwI7ZILDCE3tn5YY-oKgSUCqTCbDn2GaigKXY68N-TKEiwMN0b3vdOH2OnCFcIUM7uq8Uj5BccEC4hE3tsgsBVKrNS7f_Jh-woxjUA5qhgws6Wq9Uy8W0ga2I3hKR7paSu5sfswJv3SCc_d8qebxZP8yqtH27v5td1agVCl5bonKRCGCpUg8ibppAGUYIrsXAklQfvkGPGjfKKSySRG5GTtdI6hVxM2fm4uw3t545ip9ftLmz6l5oLJUFlwPO-NRtbNrQxBvJ6G94-TPjSCHrw16O_Hvx1798TMBKxb25eKPzu_od8AycwWSc</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Cabrera, Maria Eugenia</creator><creator>Casas, J. Alberto</creator><creator>de Austri, Roberto Ruiz</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20100501</creationdate><title>MSSM forecast for the LHC</title><author>Cabrera, Maria Eugenia ; Casas, J. Alberto ; de Austri, Roberto Ruiz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-71dd8e63ae69b112bb68a1180d716de89f0fd12142a9f9281e35a35ecc8cd9123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayesian analysis</topic><topic>Classical and Quantum Gravitation</topic><topic>Dark matter</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Robustness</topic><topic>Statistical analysis</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabrera, Maria Eugenia</creatorcontrib><creatorcontrib>Casas, J. Alberto</creatorcontrib><creatorcontrib>de Austri, Roberto Ruiz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cabrera, Maria Eugenia</au><au>Casas, J. Alberto</au><au>de Austri, Roberto Ruiz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MSSM forecast for the LHC</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>2010</volume><issue>5</issue><artnum>43</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of
M
Z
is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on
e
+
e
−
data) is considered, the preferred region (for
μ
> 0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative-
μ
possibilities.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP05(2010)043</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2010-05, Vol.2010 (5), Article 43 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_journals_2398094025 |
source | Springer Nature OA Free Journals |
subjects | Bayesian analysis Classical and Quantum Gravitation Dark matter Elementary Particles High energy physics Parameters Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Relativity Theory Robustness Statistical analysis String Theory |
title | MSSM forecast for the LHC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MSSM%20forecast%20for%20the%20LHC&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Cabrera,%20Maria%20Eugenia&rft.date=2010-05-01&rft.volume=2010&rft.issue=5&rft.artnum=43&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP05(2010)043&rft_dat=%3Cproquest_C6C%3E2398094025%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398094025&rft_id=info:pmid/&rfr_iscdi=true |