Quantum corrections to heterotic moduli potentials

In a recent paper, we derived the leading α ′ corrections to the Kähler potentials for moduli in (0 , 2) heterotic compactifications. In the same spirit as the LARGE volume stabilization scenario for type IIB orientifolds, we examine whether these quantum corrections, together with a combination of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2011-02, Vol.2011 (2), Article 113
Hauptverfasser: Anguelova, Lilia, Quigley, Callum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title The journal of high energy physics
container_volume 2011
creator Anguelova, Lilia
Quigley, Callum
description In a recent paper, we derived the leading α ′ corrections to the Kähler potentials for moduli in (0 , 2) heterotic compactifications. In the same spirit as the LARGE volume stabilization scenario for type IIB orientifolds, we examine whether these quantum corrections, together with a combination of tree-level and non-perturbative superpotentials, are sufficient to stabilize the overall volume modulus at large values. This is not a priori obvious, since the corrections we found are of a lower order than those used in the type IIB setting. Nevertheless, we find that stabilizing the volume at (exponentially) large values may be possible (under certain conditions) in these heterotic backgrounds.
doi_str_mv 10.1007/JHEP02(2011)113
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_2398084887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398084887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-be608901cb4613c199b70e8c47cbe77c26861211e91aebd548be8d36f3e9837e3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqUws0ZigSH0zk5je0RVS0GVAAlmK3EukKqNg-0M_HtSBQkWpnfD-95JH2OXCLcIIGeP6-Uz8GsOiDeI4ohNELhOVSb18Z_7lJ2FsAXAOWqYMP7SF23s94l13pONjWtDEl3yQZG8i41N9q7qd03SuUhtbIpdOGcn9RB08ZNT9rZavi7W6ebp_mFxt0mtkHlMS8pBaUBbZjkKi1qXEkjZTNqSpLQ8VzlyRNJYUFnNM1WSqkReC9JKSBJTdjXudt599hSi2bret8NLw4VWoDKl5NCajS3rXQieatP5Zl_4L4NgDmLMKMYcxJhBzEDASISh2b6T_939D_kGendkag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398084887</pqid></control><display><type>article</type><title>Quantum corrections to heterotic moduli potentials</title><source>Springer Nature OA/Free Journals</source><creator>Anguelova, Lilia ; Quigley, Callum</creator><creatorcontrib>Anguelova, Lilia ; Quigley, Callum</creatorcontrib><description>In a recent paper, we derived the leading α ′ corrections to the Kähler potentials for moduli in (0 , 2) heterotic compactifications. In the same spirit as the LARGE volume stabilization scenario for type IIB orientifolds, we examine whether these quantum corrections, together with a combination of tree-level and non-perturbative superpotentials, are sufficient to stabilize the overall volume modulus at large values. This is not a priori obvious, since the corrections we found are of a lower order than those used in the type IIB setting. Nevertheless, we find that stabilizing the volume at (exponentially) large values may be possible (under certain conditions) in these heterotic backgrounds.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP02(2011)113</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Classical and Quantum Gravitation ; Elementary Particles ; High energy physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2011-02, Vol.2011 (2), Article 113</ispartof><rights>SISSA, Trieste, Italy 2011</rights><rights>SISSA, Trieste, Italy 2011.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-be608901cb4613c199b70e8c47cbe77c26861211e91aebd548be8d36f3e9837e3</citedby><cites>FETCH-LOGICAL-c376t-be608901cb4613c199b70e8c47cbe77c26861211e91aebd548be8d36f3e9837e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP02(2011)113$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/JHEP02(2011)113$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41122,41490,42191,42559,51321,51578</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP02(2011)113$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Anguelova, Lilia</creatorcontrib><creatorcontrib>Quigley, Callum</creatorcontrib><title>Quantum corrections to heterotic moduli potentials</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>In a recent paper, we derived the leading α ′ corrections to the Kähler potentials for moduli in (0 , 2) heterotic compactifications. In the same spirit as the LARGE volume stabilization scenario for type IIB orientifolds, we examine whether these quantum corrections, together with a combination of tree-level and non-perturbative superpotentials, are sufficient to stabilize the overall volume modulus at large values. This is not a priori obvious, since the corrections we found are of a lower order than those used in the type IIB setting. Nevertheless, we find that stabilizing the volume at (exponentially) large values may be possible (under certain conditions) in these heterotic backgrounds.</description><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kDFPwzAQhS0EEqUws0ZigSH0zk5je0RVS0GVAAlmK3EukKqNg-0M_HtSBQkWpnfD-95JH2OXCLcIIGeP6-Uz8GsOiDeI4ohNELhOVSb18Z_7lJ2FsAXAOWqYMP7SF23s94l13pONjWtDEl3yQZG8i41N9q7qd03SuUhtbIpdOGcn9RB08ZNT9rZavi7W6ebp_mFxt0mtkHlMS8pBaUBbZjkKi1qXEkjZTNqSpLQ8VzlyRNJYUFnNM1WSqkReC9JKSBJTdjXudt599hSi2bret8NLw4VWoDKl5NCajS3rXQieatP5Zl_4L4NgDmLMKMYcxJhBzEDASISh2b6T_939D_kGendkag</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Anguelova, Lilia</creator><creator>Quigley, Callum</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20110201</creationdate><title>Quantum corrections to heterotic moduli potentials</title><author>Anguelova, Lilia ; Quigley, Callum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-be608901cb4613c199b70e8c47cbe77c26861211e91aebd548be8d36f3e9837e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anguelova, Lilia</creatorcontrib><creatorcontrib>Quigley, Callum</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Anguelova, Lilia</au><au>Quigley, Callum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum corrections to heterotic moduli potentials</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>2011</volume><issue>2</issue><artnum>113</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>In a recent paper, we derived the leading α ′ corrections to the Kähler potentials for moduli in (0 , 2) heterotic compactifications. In the same spirit as the LARGE volume stabilization scenario for type IIB orientifolds, we examine whether these quantum corrections, together with a combination of tree-level and non-perturbative superpotentials, are sufficient to stabilize the overall volume modulus at large values. This is not a priori obvious, since the corrections we found are of a lower order than those used in the type IIB setting. Nevertheless, we find that stabilizing the volume at (exponentially) large values may be possible (under certain conditions) in these heterotic backgrounds.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP02(2011)113</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2011-02, Vol.2011 (2), Article 113
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_journals_2398084887
source Springer Nature OA/Free Journals
subjects Classical and Quantum Gravitation
Elementary Particles
High energy physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
String Theory
title Quantum corrections to heterotic moduli potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20corrections%20to%20heterotic%20moduli%20potentials&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Anguelova,%20Lilia&rft.date=2011-02-01&rft.volume=2011&rft.issue=2&rft.artnum=113&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP02(2011)113&rft_dat=%3Cproquest_C6C%3E2398084887%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398084887&rft_id=info:pmid/&rfr_iscdi=true