UNIVERSAL COVERS OF COMMUTATIVE FINITE MORLEY RANK GROUPS
We give an algebraic description of the structure of the analytic universal cover of a complex abelian variety which suffices to determine the structure up to isomorphism. More generally, we classify the models of theories of ‘universal covers’ of rigid divisible commutative finite Morley rank group...
Gespeichert in:
Veröffentlicht in: | Journal of the Institute of Mathematics of Jussieu 2020-05, Vol.19 (3), p.767-799 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 799 |
---|---|
container_issue | 3 |
container_start_page | 767 |
container_title | Journal of the Institute of Mathematics of Jussieu |
container_volume | 19 |
creator | Bays, Martin Hart, Bradd Pillay, Anand |
description | We give an algebraic description of the structure of the analytic universal cover of a complex abelian variety which suffices to determine the structure up to isomorphism. More generally, we classify the models of theories of ‘universal covers’ of rigid divisible commutative finite Morley rank groups. |
doi_str_mv | 10.1017/S1474748018000191 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2398042747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398042747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-33b8501e093b9eee05fafe407e87f79c5134c0e7ed1f5244bba5f15de030c2f03</originalsourceid><addsrcrecordid>eNplUMtOw0AMXCGQKIUP4BaJc8DeR5Nwi6K0jcgD5YHEaZWkuxIVkLJpD_wN38KXsaHckA8eeUYeewi5RrhFQO-uQu7Z8gF9AMAAT8jMjoTLgMHpL-buxJ-Ti3HcAtAFFTgj902ePMVlFaZOVEzAKZYWZVlTh7VlnGWSJ3XsZEWZxs_fX2WYPzirsmgeq0typtvXUV399TlplnEdrd20WCVRmLo9w8XeZazzBaCCgHWBUgqEbrXi4Cnf017QC2S8B-WpDWpBOe-6VmgUG2UP76kGNic3x707M3wc1LiX2-Fg3q2lpCzwgVP7uVXhUdWbYRyN0nJnXt5a8ykR5BSR_BcR-wGNrFNm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398042747</pqid></control><display><type>article</type><title>UNIVERSAL COVERS OF COMMUTATIVE FINITE MORLEY RANK GROUPS</title><source>Cambridge University Press Journals Complete</source><creator>Bays, Martin ; Hart, Bradd ; Pillay, Anand</creator><creatorcontrib>Bays, Martin ; Hart, Bradd ; Pillay, Anand</creatorcontrib><description>We give an algebraic description of the structure of the analytic universal cover of a complex abelian variety which suffices to determine the structure up to isomorphism. More generally, we classify the models of theories of ‘universal covers’ of rigid divisible commutative finite Morley rank groups.</description><identifier>ISSN: 1474-7480</identifier><identifier>EISSN: 1475-3030</identifier><identifier>DOI: 10.1017/S1474748018000191</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Group theory ; Isomorphism</subject><ispartof>Journal of the Institute of Mathematics of Jussieu, 2020-05, Vol.19 (3), p.767-799</ispartof><rights>Cambridge University Press 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-33b8501e093b9eee05fafe407e87f79c5134c0e7ed1f5244bba5f15de030c2f03</citedby><cites>FETCH-LOGICAL-c316t-33b8501e093b9eee05fafe407e87f79c5134c0e7ed1f5244bba5f15de030c2f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Bays, Martin</creatorcontrib><creatorcontrib>Hart, Bradd</creatorcontrib><creatorcontrib>Pillay, Anand</creatorcontrib><title>UNIVERSAL COVERS OF COMMUTATIVE FINITE MORLEY RANK GROUPS</title><title>Journal of the Institute of Mathematics of Jussieu</title><description>We give an algebraic description of the structure of the analytic universal cover of a complex abelian variety which suffices to determine the structure up to isomorphism. More generally, we classify the models of theories of ‘universal covers’ of rigid divisible commutative finite Morley rank groups.</description><subject>Group theory</subject><subject>Isomorphism</subject><issn>1474-7480</issn><issn>1475-3030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplUMtOw0AMXCGQKIUP4BaJc8DeR5Nwi6K0jcgD5YHEaZWkuxIVkLJpD_wN38KXsaHckA8eeUYeewi5RrhFQO-uQu7Z8gF9AMAAT8jMjoTLgMHpL-buxJ-Ti3HcAtAFFTgj902ePMVlFaZOVEzAKZYWZVlTh7VlnGWSJ3XsZEWZxs_fX2WYPzirsmgeq0typtvXUV399TlplnEdrd20WCVRmLo9w8XeZazzBaCCgHWBUgqEbrXi4Cnf017QC2S8B-WpDWpBOe-6VmgUG2UP76kGNic3x707M3wc1LiX2-Fg3q2lpCzwgVP7uVXhUdWbYRyN0nJnXt5a8ykR5BSR_BcR-wGNrFNm</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Bays, Martin</creator><creator>Hart, Bradd</creator><creator>Pillay, Anand</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202005</creationdate><title>UNIVERSAL COVERS OF COMMUTATIVE FINITE MORLEY RANK GROUPS</title><author>Bays, Martin ; Hart, Bradd ; Pillay, Anand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-33b8501e093b9eee05fafe407e87f79c5134c0e7ed1f5244bba5f15de030c2f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Group theory</topic><topic>Isomorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bays, Martin</creatorcontrib><creatorcontrib>Hart, Bradd</creatorcontrib><creatorcontrib>Pillay, Anand</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bays, Martin</au><au>Hart, Bradd</au><au>Pillay, Anand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UNIVERSAL COVERS OF COMMUTATIVE FINITE MORLEY RANK GROUPS</atitle><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle><date>2020-05</date><risdate>2020</risdate><volume>19</volume><issue>3</issue><spage>767</spage><epage>799</epage><pages>767-799</pages><issn>1474-7480</issn><eissn>1475-3030</eissn><abstract>We give an algebraic description of the structure of the analytic universal cover of a complex abelian variety which suffices to determine the structure up to isomorphism. More generally, we classify the models of theories of ‘universal covers’ of rigid divisible commutative finite Morley rank groups.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S1474748018000191</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1474-7480 |
ispartof | Journal of the Institute of Mathematics of Jussieu, 2020-05, Vol.19 (3), p.767-799 |
issn | 1474-7480 1475-3030 |
language | eng |
recordid | cdi_proquest_journals_2398042747 |
source | Cambridge University Press Journals Complete |
subjects | Group theory Isomorphism |
title | UNIVERSAL COVERS OF COMMUTATIVE FINITE MORLEY RANK GROUPS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UNIVERSAL%20COVERS%20OF%20COMMUTATIVE%20FINITE%20MORLEY%C2%A0RANK%20GROUPS&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.au=Bays,%20Martin&rft.date=2020-05&rft.volume=19&rft.issue=3&rft.spage=767&rft.epage=799&rft.pages=767-799&rft.issn=1474-7480&rft.eissn=1475-3030&rft_id=info:doi/10.1017/S1474748018000191&rft_dat=%3Cproquest_cross%3E2398042747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398042747&rft_id=info:pmid/&rfr_iscdi=true |