UNIVERSAL COVERS OF COMMUTATIVE FINITE MORLEY RANK GROUPS

We give an algebraic description of the structure of the analytic universal cover of a complex abelian variety which suffices to determine the structure up to isomorphism. More generally, we classify the models of theories of ‘universal covers’ of rigid divisible commutative finite Morley rank group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Institute of Mathematics of Jussieu 2020-05, Vol.19 (3), p.767-799
Hauptverfasser: Bays, Martin, Hart, Bradd, Pillay, Anand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 799
container_issue 3
container_start_page 767
container_title Journal of the Institute of Mathematics of Jussieu
container_volume 19
creator Bays, Martin
Hart, Bradd
Pillay, Anand
description We give an algebraic description of the structure of the analytic universal cover of a complex abelian variety which suffices to determine the structure up to isomorphism. More generally, we classify the models of theories of ‘universal covers’ of rigid divisible commutative finite Morley rank groups.
doi_str_mv 10.1017/S1474748018000191
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2398042747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398042747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-33b8501e093b9eee05fafe407e87f79c5134c0e7ed1f5244bba5f15de030c2f03</originalsourceid><addsrcrecordid>eNplUMtOw0AMXCGQKIUP4BaJc8DeR5Nwi6K0jcgD5YHEaZWkuxIVkLJpD_wN38KXsaHckA8eeUYeewi5RrhFQO-uQu7Z8gF9AMAAT8jMjoTLgMHpL-buxJ-Ti3HcAtAFFTgj902ePMVlFaZOVEzAKZYWZVlTh7VlnGWSJ3XsZEWZxs_fX2WYPzirsmgeq0typtvXUV399TlplnEdrd20WCVRmLo9w8XeZazzBaCCgHWBUgqEbrXi4Cnf017QC2S8B-WpDWpBOe-6VmgUG2UP76kGNic3x707M3wc1LiX2-Fg3q2lpCzwgVP7uVXhUdWbYRyN0nJnXt5a8ykR5BSR_BcR-wGNrFNm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398042747</pqid></control><display><type>article</type><title>UNIVERSAL COVERS OF COMMUTATIVE FINITE MORLEY RANK GROUPS</title><source>Cambridge University Press Journals Complete</source><creator>Bays, Martin ; Hart, Bradd ; Pillay, Anand</creator><creatorcontrib>Bays, Martin ; Hart, Bradd ; Pillay, Anand</creatorcontrib><description>We give an algebraic description of the structure of the analytic universal cover of a complex abelian variety which suffices to determine the structure up to isomorphism. More generally, we classify the models of theories of ‘universal covers’ of rigid divisible commutative finite Morley rank groups.</description><identifier>ISSN: 1474-7480</identifier><identifier>EISSN: 1475-3030</identifier><identifier>DOI: 10.1017/S1474748018000191</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Group theory ; Isomorphism</subject><ispartof>Journal of the Institute of Mathematics of Jussieu, 2020-05, Vol.19 (3), p.767-799</ispartof><rights>Cambridge University Press 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-33b8501e093b9eee05fafe407e87f79c5134c0e7ed1f5244bba5f15de030c2f03</citedby><cites>FETCH-LOGICAL-c316t-33b8501e093b9eee05fafe407e87f79c5134c0e7ed1f5244bba5f15de030c2f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Bays, Martin</creatorcontrib><creatorcontrib>Hart, Bradd</creatorcontrib><creatorcontrib>Pillay, Anand</creatorcontrib><title>UNIVERSAL COVERS OF COMMUTATIVE FINITE MORLEY RANK GROUPS</title><title>Journal of the Institute of Mathematics of Jussieu</title><description>We give an algebraic description of the structure of the analytic universal cover of a complex abelian variety which suffices to determine the structure up to isomorphism. More generally, we classify the models of theories of ‘universal covers’ of rigid divisible commutative finite Morley rank groups.</description><subject>Group theory</subject><subject>Isomorphism</subject><issn>1474-7480</issn><issn>1475-3030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplUMtOw0AMXCGQKIUP4BaJc8DeR5Nwi6K0jcgD5YHEaZWkuxIVkLJpD_wN38KXsaHckA8eeUYeewi5RrhFQO-uQu7Z8gF9AMAAT8jMjoTLgMHpL-buxJ-Ti3HcAtAFFTgj902ePMVlFaZOVEzAKZYWZVlTh7VlnGWSJ3XsZEWZxs_fX2WYPzirsmgeq0typtvXUV399TlplnEdrd20WCVRmLo9w8XeZazzBaCCgHWBUgqEbrXi4Cnf017QC2S8B-WpDWpBOe-6VmgUG2UP76kGNic3x707M3wc1LiX2-Fg3q2lpCzwgVP7uVXhUdWbYRyN0nJnXt5a8ykR5BSR_BcR-wGNrFNm</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Bays, Martin</creator><creator>Hart, Bradd</creator><creator>Pillay, Anand</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202005</creationdate><title>UNIVERSAL COVERS OF COMMUTATIVE FINITE MORLEY RANK GROUPS</title><author>Bays, Martin ; Hart, Bradd ; Pillay, Anand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-33b8501e093b9eee05fafe407e87f79c5134c0e7ed1f5244bba5f15de030c2f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Group theory</topic><topic>Isomorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bays, Martin</creatorcontrib><creatorcontrib>Hart, Bradd</creatorcontrib><creatorcontrib>Pillay, Anand</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bays, Martin</au><au>Hart, Bradd</au><au>Pillay, Anand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UNIVERSAL COVERS OF COMMUTATIVE FINITE MORLEY RANK GROUPS</atitle><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle><date>2020-05</date><risdate>2020</risdate><volume>19</volume><issue>3</issue><spage>767</spage><epage>799</epage><pages>767-799</pages><issn>1474-7480</issn><eissn>1475-3030</eissn><abstract>We give an algebraic description of the structure of the analytic universal cover of a complex abelian variety which suffices to determine the structure up to isomorphism. More generally, we classify the models of theories of ‘universal covers’ of rigid divisible commutative finite Morley rank groups.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S1474748018000191</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-7480
ispartof Journal of the Institute of Mathematics of Jussieu, 2020-05, Vol.19 (3), p.767-799
issn 1474-7480
1475-3030
language eng
recordid cdi_proquest_journals_2398042747
source Cambridge University Press Journals Complete
subjects Group theory
Isomorphism
title UNIVERSAL COVERS OF COMMUTATIVE FINITE MORLEY RANK GROUPS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UNIVERSAL%20COVERS%20OF%20COMMUTATIVE%20FINITE%20MORLEY%C2%A0RANK%20GROUPS&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.au=Bays,%20Martin&rft.date=2020-05&rft.volume=19&rft.issue=3&rft.spage=767&rft.epage=799&rft.pages=767-799&rft.issn=1474-7480&rft.eissn=1475-3030&rft_id=info:doi/10.1017/S1474748018000191&rft_dat=%3Cproquest_cross%3E2398042747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398042747&rft_id=info:pmid/&rfr_iscdi=true