Improved Color Purity of Monolithic Full Color Micro-LEDs Using Distributed Bragg Reflector and Blue Light Absorption Material

In this study, CdSe/ZnS core-shell quantum dots (QDs) with various dimensions were used as the color conversion materials. QDs with dimensions of 3 nm and 5 nm were excited by gallium nitride (GaN)-based blue micro-light-emitting diodes (micro-LEDs) with a size of 30 μm × 30 μm to respectively form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2020-05, Vol.10 (5), p.436
Hauptverfasser: Chu, Shao-Yu, Wang, Hung-Yu, Lee, Ching-Ting, Lee, Hsin-Ying, Laing, Kai-Ling, Kuo, Wei-Hung, Fang, Yen-Hsiang, Lin, Chien-Chung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 436
container_title Coatings (Basel)
container_volume 10
creator Chu, Shao-Yu
Wang, Hung-Yu
Lee, Ching-Ting
Lee, Hsin-Ying
Laing, Kai-Ling
Kuo, Wei-Hung
Fang, Yen-Hsiang
Lin, Chien-Chung
description In this study, CdSe/ZnS core-shell quantum dots (QDs) with various dimensions were used as the color conversion materials. QDs with dimensions of 3 nm and 5 nm were excited by gallium nitride (GaN)-based blue micro-light-emitting diodes (micro-LEDs) with a size of 30 μm × 30 μm to respectively form the green and red lights. The hybrid Bragg reflector (HBR) with high reflectivity at the regions of the blue, green, and red lights was fabricated on the bottom side of the micro-LEDs to reflect the downward light. This could enhance the intensity of the green and red lights for the green and red QDs/micro-LEDs to 11% and 10%. The distributed Bragg reflector (DBR) was fabricated on the QDs color conversion layers to reflect the non-absorbed blue light that was not absorbed by the QDs, which could increase the probability of the QDs excited by the reflected blue light. The blue light absorption material was deposited on the DBR to absorb the blue light that escaped from the DBR, which could enhance the color purity of the resulting green and red QDs/micro-LEDs to 90.9% and 90.3%, respectively.
doi_str_mv 10.3390/coatings10050436
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2398025878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398025878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-69271fa529021aff7c5b6e363daa95364dde8aab3b47ee84f2e45109f116e5b43</originalsourceid><addsrcrecordid>eNpdUE1LAzEUDKJgqb17DHhezdd-5Fj7ZWGLIva8ZHeTbUq6qUlW6MXfbqQ9iO_yHvOGGWYAuMfokVKOnhorgu47jxFKEaPZFRgRlPMkY5hc_7lvwcT7PYrDMS0wH4Hv9eHo7Jds4cwa6-Db4HQ4QavgxvbW6LDTDVwOxlz-G904m5SLuYdbHy3hXPvgdD2EKPHsRNfBd6mMbEIkiz5iZpCw1N0uwGntrTsGbXu4EUE6LcwduFHCeDm57DHYLhcfs5ekfF2tZ9MyaSimIck4ybESKeGIYKFU3qR1JmlGWyF4SjPWtrIQoqY1y6UsmCKSpRhxhXEm05rRMXg468awn4P0odrbwfXRsiKUF4ikRV5EFjqzYkbvnVTV0emDcKcKo-q36Op_0fQHu7xznQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398025878</pqid></control><display><type>article</type><title>Improved Color Purity of Monolithic Full Color Micro-LEDs Using Distributed Bragg Reflector and Blue Light Absorption Material</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Alma/SFX Local Collection</source><creator>Chu, Shao-Yu ; Wang, Hung-Yu ; Lee, Ching-Ting ; Lee, Hsin-Ying ; Laing, Kai-Ling ; Kuo, Wei-Hung ; Fang, Yen-Hsiang ; Lin, Chien-Chung</creator><creatorcontrib>Chu, Shao-Yu ; Wang, Hung-Yu ; Lee, Ching-Ting ; Lee, Hsin-Ying ; Laing, Kai-Ling ; Kuo, Wei-Hung ; Fang, Yen-Hsiang ; Lin, Chien-Chung</creatorcontrib><description>In this study, CdSe/ZnS core-shell quantum dots (QDs) with various dimensions were used as the color conversion materials. QDs with dimensions of 3 nm and 5 nm were excited by gallium nitride (GaN)-based blue micro-light-emitting diodes (micro-LEDs) with a size of 30 μm × 30 μm to respectively form the green and red lights. The hybrid Bragg reflector (HBR) with high reflectivity at the regions of the blue, green, and red lights was fabricated on the bottom side of the micro-LEDs to reflect the downward light. This could enhance the intensity of the green and red lights for the green and red QDs/micro-LEDs to 11% and 10%. The distributed Bragg reflector (DBR) was fabricated on the QDs color conversion layers to reflect the non-absorbed blue light that was not absorbed by the QDs, which could increase the probability of the QDs excited by the reflected blue light. The blue light absorption material was deposited on the DBR to absorb the blue light that escaped from the DBR, which could enhance the color purity of the resulting green and red QDs/micro-LEDs to 90.9% and 90.3%, respectively.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings10050436</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Color ; Conversion ; Efficiency ; Electrodes ; Electromagnetic absorption ; Gallium nitrides ; Light emitting diodes ; Luminous intensity ; Metals ; Organic chemicals ; Purity ; Quantum dots</subject><ispartof>Coatings (Basel), 2020-05, Vol.10 (5), p.436</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-69271fa529021aff7c5b6e363daa95364dde8aab3b47ee84f2e45109f116e5b43</citedby><cites>FETCH-LOGICAL-c313t-69271fa529021aff7c5b6e363daa95364dde8aab3b47ee84f2e45109f116e5b43</cites><orcidid>0000-0001-8493-9442 ; 0000-0001-8656-1922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chu, Shao-Yu</creatorcontrib><creatorcontrib>Wang, Hung-Yu</creatorcontrib><creatorcontrib>Lee, Ching-Ting</creatorcontrib><creatorcontrib>Lee, Hsin-Ying</creatorcontrib><creatorcontrib>Laing, Kai-Ling</creatorcontrib><creatorcontrib>Kuo, Wei-Hung</creatorcontrib><creatorcontrib>Fang, Yen-Hsiang</creatorcontrib><creatorcontrib>Lin, Chien-Chung</creatorcontrib><title>Improved Color Purity of Monolithic Full Color Micro-LEDs Using Distributed Bragg Reflector and Blue Light Absorption Material</title><title>Coatings (Basel)</title><description>In this study, CdSe/ZnS core-shell quantum dots (QDs) with various dimensions were used as the color conversion materials. QDs with dimensions of 3 nm and 5 nm were excited by gallium nitride (GaN)-based blue micro-light-emitting diodes (micro-LEDs) with a size of 30 μm × 30 μm to respectively form the green and red lights. The hybrid Bragg reflector (HBR) with high reflectivity at the regions of the blue, green, and red lights was fabricated on the bottom side of the micro-LEDs to reflect the downward light. This could enhance the intensity of the green and red lights for the green and red QDs/micro-LEDs to 11% and 10%. The distributed Bragg reflector (DBR) was fabricated on the QDs color conversion layers to reflect the non-absorbed blue light that was not absorbed by the QDs, which could increase the probability of the QDs excited by the reflected blue light. The blue light absorption material was deposited on the DBR to absorb the blue light that escaped from the DBR, which could enhance the color purity of the resulting green and red QDs/micro-LEDs to 90.9% and 90.3%, respectively.</description><subject>Color</subject><subject>Conversion</subject><subject>Efficiency</subject><subject>Electrodes</subject><subject>Electromagnetic absorption</subject><subject>Gallium nitrides</subject><subject>Light emitting diodes</subject><subject>Luminous intensity</subject><subject>Metals</subject><subject>Organic chemicals</subject><subject>Purity</subject><subject>Quantum dots</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUE1LAzEUDKJgqb17DHhezdd-5Fj7ZWGLIva8ZHeTbUq6qUlW6MXfbqQ9iO_yHvOGGWYAuMfokVKOnhorgu47jxFKEaPZFRgRlPMkY5hc_7lvwcT7PYrDMS0wH4Hv9eHo7Jds4cwa6-Db4HQ4QavgxvbW6LDTDVwOxlz-G904m5SLuYdbHy3hXPvgdD2EKPHsRNfBd6mMbEIkiz5iZpCw1N0uwGntrTsGbXu4EUE6LcwduFHCeDm57DHYLhcfs5ekfF2tZ9MyaSimIck4ybESKeGIYKFU3qR1JmlGWyF4SjPWtrIQoqY1y6UsmCKSpRhxhXEm05rRMXg468awn4P0odrbwfXRsiKUF4ikRV5EFjqzYkbvnVTV0emDcKcKo-q36Op_0fQHu7xznQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Chu, Shao-Yu</creator><creator>Wang, Hung-Yu</creator><creator>Lee, Ching-Ting</creator><creator>Lee, Hsin-Ying</creator><creator>Laing, Kai-Ling</creator><creator>Kuo, Wei-Hung</creator><creator>Fang, Yen-Hsiang</creator><creator>Lin, Chien-Chung</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-8493-9442</orcidid><orcidid>https://orcid.org/0000-0001-8656-1922</orcidid></search><sort><creationdate>20200501</creationdate><title>Improved Color Purity of Monolithic Full Color Micro-LEDs Using Distributed Bragg Reflector and Blue Light Absorption Material</title><author>Chu, Shao-Yu ; Wang, Hung-Yu ; Lee, Ching-Ting ; Lee, Hsin-Ying ; Laing, Kai-Ling ; Kuo, Wei-Hung ; Fang, Yen-Hsiang ; Lin, Chien-Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-69271fa529021aff7c5b6e363daa95364dde8aab3b47ee84f2e45109f116e5b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Color</topic><topic>Conversion</topic><topic>Efficiency</topic><topic>Electrodes</topic><topic>Electromagnetic absorption</topic><topic>Gallium nitrides</topic><topic>Light emitting diodes</topic><topic>Luminous intensity</topic><topic>Metals</topic><topic>Organic chemicals</topic><topic>Purity</topic><topic>Quantum dots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Shao-Yu</creatorcontrib><creatorcontrib>Wang, Hung-Yu</creatorcontrib><creatorcontrib>Lee, Ching-Ting</creatorcontrib><creatorcontrib>Lee, Hsin-Ying</creatorcontrib><creatorcontrib>Laing, Kai-Ling</creatorcontrib><creatorcontrib>Kuo, Wei-Hung</creatorcontrib><creatorcontrib>Fang, Yen-Hsiang</creatorcontrib><creatorcontrib>Lin, Chien-Chung</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Shao-Yu</au><au>Wang, Hung-Yu</au><au>Lee, Ching-Ting</au><au>Lee, Hsin-Ying</au><au>Laing, Kai-Ling</au><au>Kuo, Wei-Hung</au><au>Fang, Yen-Hsiang</au><au>Lin, Chien-Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Color Purity of Monolithic Full Color Micro-LEDs Using Distributed Bragg Reflector and Blue Light Absorption Material</atitle><jtitle>Coatings (Basel)</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>10</volume><issue>5</issue><spage>436</spage><pages>436-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>In this study, CdSe/ZnS core-shell quantum dots (QDs) with various dimensions were used as the color conversion materials. QDs with dimensions of 3 nm and 5 nm were excited by gallium nitride (GaN)-based blue micro-light-emitting diodes (micro-LEDs) with a size of 30 μm × 30 μm to respectively form the green and red lights. The hybrid Bragg reflector (HBR) with high reflectivity at the regions of the blue, green, and red lights was fabricated on the bottom side of the micro-LEDs to reflect the downward light. This could enhance the intensity of the green and red lights for the green and red QDs/micro-LEDs to 11% and 10%. The distributed Bragg reflector (DBR) was fabricated on the QDs color conversion layers to reflect the non-absorbed blue light that was not absorbed by the QDs, which could increase the probability of the QDs excited by the reflected blue light. The blue light absorption material was deposited on the DBR to absorb the blue light that escaped from the DBR, which could enhance the color purity of the resulting green and red QDs/micro-LEDs to 90.9% and 90.3%, respectively.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings10050436</doi><orcidid>https://orcid.org/0000-0001-8493-9442</orcidid><orcidid>https://orcid.org/0000-0001-8656-1922</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2020-05, Vol.10 (5), p.436
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_2398025878
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Alma/SFX Local Collection
subjects Color
Conversion
Efficiency
Electrodes
Electromagnetic absorption
Gallium nitrides
Light emitting diodes
Luminous intensity
Metals
Organic chemicals
Purity
Quantum dots
title Improved Color Purity of Monolithic Full Color Micro-LEDs Using Distributed Bragg Reflector and Blue Light Absorption Material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Color%20Purity%20of%20Monolithic%20Full%20Color%20Micro-LEDs%20Using%20Distributed%20Bragg%20Reflector%20and%20Blue%20Light%20Absorption%20Material&rft.jtitle=Coatings%20(Basel)&rft.au=Chu,%20Shao-Yu&rft.date=2020-05-01&rft.volume=10&rft.issue=5&rft.spage=436&rft.pages=436-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings10050436&rft_dat=%3Cproquest_cross%3E2398025878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398025878&rft_id=info:pmid/&rfr_iscdi=true