Thermomechanical Wear Testing of Metal Matrix Composite Cladding for Potential Application in Hot Rolling Mills

Laser metal deposition (LMD) is utilized to clad the surface of a miniaturized test roll (Ø 40 mm) of tool steel. The cladding consists of two layers: a nickel alloy as intermediate layer deposited onto the surface of the steel substrate, and a metal matrix composite (MMC) as top layer consisting of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Steel research international 2020-05, Vol.91 (5), p.n/a
Hauptverfasser: Domitner, Josef, Aigner, Michael, Stern, Thomas, Paar, Armin, Sommitsch, Christof, Elizondo, Leonel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Steel research international
container_volume 91
creator Domitner, Josef
Aigner, Michael
Stern, Thomas
Paar, Armin
Sommitsch, Christof
Elizondo, Leonel
description Laser metal deposition (LMD) is utilized to clad the surface of a miniaturized test roll (Ø 40 mm) of tool steel. The cladding consists of two layers: a nickel alloy as intermediate layer deposited onto the surface of the steel substrate, and a metal matrix composite (MMC) as top layer consisting of spherical tungsten carbide particles embedded into the nickel alloy matrix. The thermomechanical wear behavior of the cladding is investigated on a test rig, where the test roll is pressed against an inductively heated load roll. Multiple test runs up to several hours simulating industrial loading conditions are performed. The presented testing procedure enables predicting the time‐dependent abrasive wear behavior of the cladding, in particular for hot rolling mill applications. After testing for 8 h at temperature of 650 °C and at contact pressure of approximately 1 GPa, the maximum depth of the wear mark is about 0.12 mm. Partial cracking, debonding and dissolution of the tungsten carbide particles, as well as formation of iron and chromium oxides at the surface of the wear marks occur. However, as low abrasive wear is observed, the investigated MMC may potentially be applicable for cladding rolls in steel hot rolling mills. The potential of a metal matrix composite (MMC) for hard‐facing steel rolls used in hot rolling mills and operated at harsh thermomechanical load conditions is investigated. The microstructure of this MMC consists of hard tungsten carbide particles embedded in a comparatively soft nickel alloy matrix. The MMC is produced by powder‐based laser cladding. The energy dispersive X‐ray (EDX) element maps illustrate the distributions of tungsten (orange) and nickel (yellow) inside the particles and inside the matrix, respectively.
doi_str_mv 10.1002/srin.201900478
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2398017963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398017963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-d5b08850b43561fb201c6dda581feea7d9f1a57b46ded0f02faea5b1ada93ec13</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4soOOaungOeO5OlTdPjKP4YbCpzoreQNonLSJuaZOj-e1MmevRd3uPx-b7H95sklwhOEYSza-90N51BVEKYFfQkGSFKyhRn2dtpnAlCKSYUnycT73cwFqaUFNkosZutdK1tZbPlnW64Aa-SO7CRPujuHVgFVjLE7YoHp79AZdveeh0kqAwXYkCUdeDJBtkFHbl535t4JmjbAd2BexvA2hozgCttjL9IzhQ3Xk5--jh5ub3ZVPfp8vFuUc2XaYPzgqYiryGlOawznBOk6uisIULwnCIlJS9EqRDPizojQgqo4ExxyfMaccFLLBuEx8nV8W7v7Mc-umE7u3ddfMlmuKQQFSXBkZoeqcZZ751UrHe65e7AEGRDrmzIlf3mGgXlUfCpjTz8Q7Pn9eLhT_sNcOp-gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398017963</pqid></control><display><type>article</type><title>Thermomechanical Wear Testing of Metal Matrix Composite Cladding for Potential Application in Hot Rolling Mills</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Domitner, Josef ; Aigner, Michael ; Stern, Thomas ; Paar, Armin ; Sommitsch, Christof ; Elizondo, Leonel</creator><creatorcontrib>Domitner, Josef ; Aigner, Michael ; Stern, Thomas ; Paar, Armin ; Sommitsch, Christof ; Elizondo, Leonel</creatorcontrib><description>Laser metal deposition (LMD) is utilized to clad the surface of a miniaturized test roll (Ø 40 mm) of tool steel. The cladding consists of two layers: a nickel alloy as intermediate layer deposited onto the surface of the steel substrate, and a metal matrix composite (MMC) as top layer consisting of spherical tungsten carbide particles embedded into the nickel alloy matrix. The thermomechanical wear behavior of the cladding is investigated on a test rig, where the test roll is pressed against an inductively heated load roll. Multiple test runs up to several hours simulating industrial loading conditions are performed. The presented testing procedure enables predicting the time‐dependent abrasive wear behavior of the cladding, in particular for hot rolling mill applications. After testing for 8 h at temperature of 650 °C and at contact pressure of approximately 1 GPa, the maximum depth of the wear mark is about 0.12 mm. Partial cracking, debonding and dissolution of the tungsten carbide particles, as well as formation of iron and chromium oxides at the surface of the wear marks occur. However, as low abrasive wear is observed, the investigated MMC may potentially be applicable for cladding rolls in steel hot rolling mills. The potential of a metal matrix composite (MMC) for hard‐facing steel rolls used in hot rolling mills and operated at harsh thermomechanical load conditions is investigated. The microstructure of this MMC consists of hard tungsten carbide particles embedded in a comparatively soft nickel alloy matrix. The MMC is produced by powder‐based laser cladding. The energy dispersive X‐ray (EDX) element maps illustrate the distributions of tungsten (orange) and nickel (yellow) inside the particles and inside the matrix, respectively.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.201900478</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Abrasive wear ; Chromium oxides ; Clad metals ; Cladding ; Contact pressure ; Hot rolling ; Hot rolling mills ; laser cladding ; Laser deposition ; laser metal deposition ; Metal matrix composites ; Nickel alloys ; Nickel base alloys ; Rolling mills ; Substrates ; Test procedures ; Thermomechanical properties ; Time dependence ; Tool steels ; Tungsten carbide ; wear resistance</subject><ispartof>Steel research international, 2020-05, Vol.91 (5), p.n/a</ispartof><rights>2019 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-d5b08850b43561fb201c6dda581feea7d9f1a57b46ded0f02faea5b1ada93ec13</citedby><cites>FETCH-LOGICAL-c3578-d5b08850b43561fb201c6dda581feea7d9f1a57b46ded0f02faea5b1ada93ec13</cites><orcidid>0000-0002-6023-7216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.201900478$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.201900478$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Domitner, Josef</creatorcontrib><creatorcontrib>Aigner, Michael</creatorcontrib><creatorcontrib>Stern, Thomas</creatorcontrib><creatorcontrib>Paar, Armin</creatorcontrib><creatorcontrib>Sommitsch, Christof</creatorcontrib><creatorcontrib>Elizondo, Leonel</creatorcontrib><title>Thermomechanical Wear Testing of Metal Matrix Composite Cladding for Potential Application in Hot Rolling Mills</title><title>Steel research international</title><description>Laser metal deposition (LMD) is utilized to clad the surface of a miniaturized test roll (Ø 40 mm) of tool steel. The cladding consists of two layers: a nickel alloy as intermediate layer deposited onto the surface of the steel substrate, and a metal matrix composite (MMC) as top layer consisting of spherical tungsten carbide particles embedded into the nickel alloy matrix. The thermomechanical wear behavior of the cladding is investigated on a test rig, where the test roll is pressed against an inductively heated load roll. Multiple test runs up to several hours simulating industrial loading conditions are performed. The presented testing procedure enables predicting the time‐dependent abrasive wear behavior of the cladding, in particular for hot rolling mill applications. After testing for 8 h at temperature of 650 °C and at contact pressure of approximately 1 GPa, the maximum depth of the wear mark is about 0.12 mm. Partial cracking, debonding and dissolution of the tungsten carbide particles, as well as formation of iron and chromium oxides at the surface of the wear marks occur. However, as low abrasive wear is observed, the investigated MMC may potentially be applicable for cladding rolls in steel hot rolling mills. The potential of a metal matrix composite (MMC) for hard‐facing steel rolls used in hot rolling mills and operated at harsh thermomechanical load conditions is investigated. The microstructure of this MMC consists of hard tungsten carbide particles embedded in a comparatively soft nickel alloy matrix. The MMC is produced by powder‐based laser cladding. The energy dispersive X‐ray (EDX) element maps illustrate the distributions of tungsten (orange) and nickel (yellow) inside the particles and inside the matrix, respectively.</description><subject>Abrasive wear</subject><subject>Chromium oxides</subject><subject>Clad metals</subject><subject>Cladding</subject><subject>Contact pressure</subject><subject>Hot rolling</subject><subject>Hot rolling mills</subject><subject>laser cladding</subject><subject>Laser deposition</subject><subject>laser metal deposition</subject><subject>Metal matrix composites</subject><subject>Nickel alloys</subject><subject>Nickel base alloys</subject><subject>Rolling mills</subject><subject>Substrates</subject><subject>Test procedures</subject><subject>Thermomechanical properties</subject><subject>Time dependence</subject><subject>Tool steels</subject><subject>Tungsten carbide</subject><subject>wear resistance</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM9LwzAUx4soOOaungOeO5OlTdPjKP4YbCpzoreQNonLSJuaZOj-e1MmevRd3uPx-b7H95sklwhOEYSza-90N51BVEKYFfQkGSFKyhRn2dtpnAlCKSYUnycT73cwFqaUFNkosZutdK1tZbPlnW64Aa-SO7CRPujuHVgFVjLE7YoHp79AZdveeh0kqAwXYkCUdeDJBtkFHbl535t4JmjbAd2BexvA2hozgCttjL9IzhQ3Xk5--jh5ub3ZVPfp8vFuUc2XaYPzgqYiryGlOawznBOk6uisIULwnCIlJS9EqRDPizojQgqo4ExxyfMaccFLLBuEx8nV8W7v7Mc-umE7u3ddfMlmuKQQFSXBkZoeqcZZ751UrHe65e7AEGRDrmzIlf3mGgXlUfCpjTz8Q7Pn9eLhT_sNcOp-gw</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Domitner, Josef</creator><creator>Aigner, Michael</creator><creator>Stern, Thomas</creator><creator>Paar, Armin</creator><creator>Sommitsch, Christof</creator><creator>Elizondo, Leonel</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6023-7216</orcidid></search><sort><creationdate>202005</creationdate><title>Thermomechanical Wear Testing of Metal Matrix Composite Cladding for Potential Application in Hot Rolling Mills</title><author>Domitner, Josef ; Aigner, Michael ; Stern, Thomas ; Paar, Armin ; Sommitsch, Christof ; Elizondo, Leonel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-d5b08850b43561fb201c6dda581feea7d9f1a57b46ded0f02faea5b1ada93ec13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abrasive wear</topic><topic>Chromium oxides</topic><topic>Clad metals</topic><topic>Cladding</topic><topic>Contact pressure</topic><topic>Hot rolling</topic><topic>Hot rolling mills</topic><topic>laser cladding</topic><topic>Laser deposition</topic><topic>laser metal deposition</topic><topic>Metal matrix composites</topic><topic>Nickel alloys</topic><topic>Nickel base alloys</topic><topic>Rolling mills</topic><topic>Substrates</topic><topic>Test procedures</topic><topic>Thermomechanical properties</topic><topic>Time dependence</topic><topic>Tool steels</topic><topic>Tungsten carbide</topic><topic>wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domitner, Josef</creatorcontrib><creatorcontrib>Aigner, Michael</creatorcontrib><creatorcontrib>Stern, Thomas</creatorcontrib><creatorcontrib>Paar, Armin</creatorcontrib><creatorcontrib>Sommitsch, Christof</creatorcontrib><creatorcontrib>Elizondo, Leonel</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domitner, Josef</au><au>Aigner, Michael</au><au>Stern, Thomas</au><au>Paar, Armin</au><au>Sommitsch, Christof</au><au>Elizondo, Leonel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermomechanical Wear Testing of Metal Matrix Composite Cladding for Potential Application in Hot Rolling Mills</atitle><jtitle>Steel research international</jtitle><date>2020-05</date><risdate>2020</risdate><volume>91</volume><issue>5</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>Laser metal deposition (LMD) is utilized to clad the surface of a miniaturized test roll (Ø 40 mm) of tool steel. The cladding consists of two layers: a nickel alloy as intermediate layer deposited onto the surface of the steel substrate, and a metal matrix composite (MMC) as top layer consisting of spherical tungsten carbide particles embedded into the nickel alloy matrix. The thermomechanical wear behavior of the cladding is investigated on a test rig, where the test roll is pressed against an inductively heated load roll. Multiple test runs up to several hours simulating industrial loading conditions are performed. The presented testing procedure enables predicting the time‐dependent abrasive wear behavior of the cladding, in particular for hot rolling mill applications. After testing for 8 h at temperature of 650 °C and at contact pressure of approximately 1 GPa, the maximum depth of the wear mark is about 0.12 mm. Partial cracking, debonding and dissolution of the tungsten carbide particles, as well as formation of iron and chromium oxides at the surface of the wear marks occur. However, as low abrasive wear is observed, the investigated MMC may potentially be applicable for cladding rolls in steel hot rolling mills. The potential of a metal matrix composite (MMC) for hard‐facing steel rolls used in hot rolling mills and operated at harsh thermomechanical load conditions is investigated. The microstructure of this MMC consists of hard tungsten carbide particles embedded in a comparatively soft nickel alloy matrix. The MMC is produced by powder‐based laser cladding. The energy dispersive X‐ray (EDX) element maps illustrate the distributions of tungsten (orange) and nickel (yellow) inside the particles and inside the matrix, respectively.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.201900478</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6023-7216</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1611-3683
ispartof Steel research international, 2020-05, Vol.91 (5), p.n/a
issn 1611-3683
1869-344X
language eng
recordid cdi_proquest_journals_2398017963
source Wiley Online Library - AutoHoldings Journals
subjects Abrasive wear
Chromium oxides
Clad metals
Cladding
Contact pressure
Hot rolling
Hot rolling mills
laser cladding
Laser deposition
laser metal deposition
Metal matrix composites
Nickel alloys
Nickel base alloys
Rolling mills
Substrates
Test procedures
Thermomechanical properties
Time dependence
Tool steels
Tungsten carbide
wear resistance
title Thermomechanical Wear Testing of Metal Matrix Composite Cladding for Potential Application in Hot Rolling Mills
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermomechanical%20Wear%20Testing%20of%20Metal%20Matrix%20Composite%20Cladding%20for%20Potential%20Application%20in%20Hot%20Rolling%20Mills&rft.jtitle=Steel%20research%20international&rft.au=Domitner,%20Josef&rft.date=2020-05&rft.volume=91&rft.issue=5&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.201900478&rft_dat=%3Cproquest_cross%3E2398017963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398017963&rft_id=info:pmid/&rfr_iscdi=true