Gauge-Higgs dark matter

When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2010-03, Vol.2010 (3), Article 64
Hauptverfasser: Haba, Naoyuki, Matsumoto, Shigeki, Okada, Nobuchika, Yamashita, Toshifumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title The journal of high energy physics
container_volume 2010
creator Haba, Naoyuki
Matsumoto, Shigeki
Okada, Nobuchika
Yamashita, Toshifumi
description When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)×U(1) X gauge-Higgs unification model compactified on the S 1 / Z 2 with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments.
doi_str_mv 10.1007/JHEP03(2010)064
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_2398003269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398003269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-280713c43824fa859afca80e1c083f3a6272fbd6ade327370f162600348053b83</originalsourceid><addsrcrecordid>eNp1j79PwzAQhS0EEqUwd63EAkPonS_xjxFVpQFVggFmy03sqIU2xU4G_ntcBQkWpnvD997pY2yCcIcAcvZULl6Abjgg3ILIT9gIgetM5VKf_snn7CLGLQAWqGHEJkvbNy4rN00Tp7UN79Od7ToXLtmZtx_RXf3cMXt7WLzOy2z1vHyc36-yihC6jCuQSFVOiufeqkJbX1kFDitQ5MkKLrlf18LWjrgkCR4FFwCUKyhorWjMrofdQ2g_exc7s237sE8vDSetEsmFTtRsoKrQxhicN4ew2dnwZRDM0d4M9uZob5J9asDQiIncNy787v5X-QZd_Fgp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398003269</pqid></control><display><type>article</type><title>Gauge-Higgs dark matter</title><source>Springer Nature OA Free Journals</source><creator>Haba, Naoyuki ; Matsumoto, Shigeki ; Okada, Nobuchika ; Yamashita, Toshifumi</creator><creatorcontrib>Haba, Naoyuki ; Matsumoto, Shigeki ; Okada, Nobuchika ; Yamashita, Toshifumi</creatorcontrib><description>When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)×U(1) X gauge-Higgs unification model compactified on the S 1 / Z 2 with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP03(2010)064</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Boundary conditions ; Classical and Quantum Gravitation ; Dark matter ; Elastic scattering ; Elementary Particles ; Fermions ; High energy physics ; Mathematical models ; Nucleons ; Parameter identification ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Scattering cross sections ; Standard model (particle physics) ; String Theory ; Symmetry</subject><ispartof>The journal of high energy physics, 2010-03, Vol.2010 (3), Article 64</ispartof><rights>SISSA, Trieste, Italy 2010</rights><rights>SISSA, Trieste, Italy 2010.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-280713c43824fa859afca80e1c083f3a6272fbd6ade327370f162600348053b83</citedby><cites>FETCH-LOGICAL-c310t-280713c43824fa859afca80e1c083f3a6272fbd6ade327370f162600348053b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP03(2010)064$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP03(2010)064$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP03(2010)064$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Haba, Naoyuki</creatorcontrib><creatorcontrib>Matsumoto, Shigeki</creatorcontrib><creatorcontrib>Okada, Nobuchika</creatorcontrib><creatorcontrib>Yamashita, Toshifumi</creatorcontrib><title>Gauge-Higgs dark matter</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)×U(1) X gauge-Higgs unification model compactified on the S 1 / Z 2 with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments.</description><subject>Boundary conditions</subject><subject>Classical and Quantum Gravitation</subject><subject>Dark matter</subject><subject>Elastic scattering</subject><subject>Elementary Particles</subject><subject>Fermions</subject><subject>High energy physics</subject><subject>Mathematical models</subject><subject>Nucleons</subject><subject>Parameter identification</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Scattering cross sections</subject><subject>Standard model (particle physics)</subject><subject>String Theory</subject><subject>Symmetry</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1j79PwzAQhS0EEqUwd63EAkPonS_xjxFVpQFVggFmy03sqIU2xU4G_ntcBQkWpnvD997pY2yCcIcAcvZULl6Abjgg3ILIT9gIgetM5VKf_snn7CLGLQAWqGHEJkvbNy4rN00Tp7UN79Od7ToXLtmZtx_RXf3cMXt7WLzOy2z1vHyc36-yihC6jCuQSFVOiufeqkJbX1kFDitQ5MkKLrlf18LWjrgkCR4FFwCUKyhorWjMrofdQ2g_exc7s237sE8vDSetEsmFTtRsoKrQxhicN4ew2dnwZRDM0d4M9uZob5J9asDQiIncNy787v5X-QZd_Fgp</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Haba, Naoyuki</creator><creator>Matsumoto, Shigeki</creator><creator>Okada, Nobuchika</creator><creator>Yamashita, Toshifumi</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100301</creationdate><title>Gauge-Higgs dark matter</title><author>Haba, Naoyuki ; Matsumoto, Shigeki ; Okada, Nobuchika ; Yamashita, Toshifumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-280713c43824fa859afca80e1c083f3a6272fbd6ade327370f162600348053b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Boundary conditions</topic><topic>Classical and Quantum Gravitation</topic><topic>Dark matter</topic><topic>Elastic scattering</topic><topic>Elementary Particles</topic><topic>Fermions</topic><topic>High energy physics</topic><topic>Mathematical models</topic><topic>Nucleons</topic><topic>Parameter identification</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Scattering cross sections</topic><topic>Standard model (particle physics)</topic><topic>String Theory</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haba, Naoyuki</creatorcontrib><creatorcontrib>Matsumoto, Shigeki</creatorcontrib><creatorcontrib>Okada, Nobuchika</creatorcontrib><creatorcontrib>Yamashita, Toshifumi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haba, Naoyuki</au><au>Matsumoto, Shigeki</au><au>Okada, Nobuchika</au><au>Yamashita, Toshifumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gauge-Higgs dark matter</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>2010</volume><issue>3</issue><artnum>64</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)×U(1) X gauge-Higgs unification model compactified on the S 1 / Z 2 with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP03(2010)064</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2010-03, Vol.2010 (3), Article 64
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_journals_2398003269
source Springer Nature OA Free Journals
subjects Boundary conditions
Classical and Quantum Gravitation
Dark matter
Elastic scattering
Elementary Particles
Fermions
High energy physics
Mathematical models
Nucleons
Parameter identification
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
Scattering cross sections
Standard model (particle physics)
String Theory
Symmetry
title Gauge-Higgs dark matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gauge-Higgs%20dark%20matter&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Haba,%20Naoyuki&rft.date=2010-03-01&rft.volume=2010&rft.issue=3&rft.artnum=64&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP03(2010)064&rft_dat=%3Cproquest_C6C%3E2398003269%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398003269&rft_id=info:pmid/&rfr_iscdi=true