Gauge-Higgs dark matter
When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2010-03, Vol.2010 (3), Article 64 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | The journal of high energy physics |
container_volume | 2010 |
creator | Haba, Naoyuki Matsumoto, Shigeki Okada, Nobuchika Yamashita, Toshifumi |
description | When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)×U(1)
X
gauge-Higgs unification model compactified on the
S
1
/
Z
2
with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments. |
doi_str_mv | 10.1007/JHEP03(2010)064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_2398003269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398003269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-280713c43824fa859afca80e1c083f3a6272fbd6ade327370f162600348053b83</originalsourceid><addsrcrecordid>eNp1j79PwzAQhS0EEqUwd63EAkPonS_xjxFVpQFVggFmy03sqIU2xU4G_ntcBQkWpnvD997pY2yCcIcAcvZULl6Abjgg3ILIT9gIgetM5VKf_snn7CLGLQAWqGHEJkvbNy4rN00Tp7UN79Od7ToXLtmZtx_RXf3cMXt7WLzOy2z1vHyc36-yihC6jCuQSFVOiufeqkJbX1kFDitQ5MkKLrlf18LWjrgkCR4FFwCUKyhorWjMrofdQ2g_exc7s237sE8vDSetEsmFTtRsoKrQxhicN4ew2dnwZRDM0d4M9uZob5J9asDQiIncNy787v5X-QZd_Fgp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398003269</pqid></control><display><type>article</type><title>Gauge-Higgs dark matter</title><source>Springer Nature OA Free Journals</source><creator>Haba, Naoyuki ; Matsumoto, Shigeki ; Okada, Nobuchika ; Yamashita, Toshifumi</creator><creatorcontrib>Haba, Naoyuki ; Matsumoto, Shigeki ; Okada, Nobuchika ; Yamashita, Toshifumi</creatorcontrib><description>When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)×U(1)
X
gauge-Higgs unification model compactified on the
S
1
/
Z
2
with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP03(2010)064</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Boundary conditions ; Classical and Quantum Gravitation ; Dark matter ; Elastic scattering ; Elementary Particles ; Fermions ; High energy physics ; Mathematical models ; Nucleons ; Parameter identification ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Scattering cross sections ; Standard model (particle physics) ; String Theory ; Symmetry</subject><ispartof>The journal of high energy physics, 2010-03, Vol.2010 (3), Article 64</ispartof><rights>SISSA, Trieste, Italy 2010</rights><rights>SISSA, Trieste, Italy 2010.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-280713c43824fa859afca80e1c083f3a6272fbd6ade327370f162600348053b83</citedby><cites>FETCH-LOGICAL-c310t-280713c43824fa859afca80e1c083f3a6272fbd6ade327370f162600348053b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP03(2010)064$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP03(2010)064$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1007/JHEP03(2010)064$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc></links><search><creatorcontrib>Haba, Naoyuki</creatorcontrib><creatorcontrib>Matsumoto, Shigeki</creatorcontrib><creatorcontrib>Okada, Nobuchika</creatorcontrib><creatorcontrib>Yamashita, Toshifumi</creatorcontrib><title>Gauge-Higgs dark matter</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)×U(1)
X
gauge-Higgs unification model compactified on the
S
1
/
Z
2
with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments.</description><subject>Boundary conditions</subject><subject>Classical and Quantum Gravitation</subject><subject>Dark matter</subject><subject>Elastic scattering</subject><subject>Elementary Particles</subject><subject>Fermions</subject><subject>High energy physics</subject><subject>Mathematical models</subject><subject>Nucleons</subject><subject>Parameter identification</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Scattering cross sections</subject><subject>Standard model (particle physics)</subject><subject>String Theory</subject><subject>Symmetry</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1j79PwzAQhS0EEqUwd63EAkPonS_xjxFVpQFVggFmy03sqIU2xU4G_ntcBQkWpnvD997pY2yCcIcAcvZULl6Abjgg3ILIT9gIgetM5VKf_snn7CLGLQAWqGHEJkvbNy4rN00Tp7UN79Od7ToXLtmZtx_RXf3cMXt7WLzOy2z1vHyc36-yihC6jCuQSFVOiufeqkJbX1kFDitQ5MkKLrlf18LWjrgkCR4FFwCUKyhorWjMrofdQ2g_exc7s237sE8vDSetEsmFTtRsoKrQxhicN4ew2dnwZRDM0d4M9uZob5J9asDQiIncNy787v5X-QZd_Fgp</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Haba, Naoyuki</creator><creator>Matsumoto, Shigeki</creator><creator>Okada, Nobuchika</creator><creator>Yamashita, Toshifumi</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100301</creationdate><title>Gauge-Higgs dark matter</title><author>Haba, Naoyuki ; Matsumoto, Shigeki ; Okada, Nobuchika ; Yamashita, Toshifumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-280713c43824fa859afca80e1c083f3a6272fbd6ade327370f162600348053b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Boundary conditions</topic><topic>Classical and Quantum Gravitation</topic><topic>Dark matter</topic><topic>Elastic scattering</topic><topic>Elementary Particles</topic><topic>Fermions</topic><topic>High energy physics</topic><topic>Mathematical models</topic><topic>Nucleons</topic><topic>Parameter identification</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Scattering cross sections</topic><topic>Standard model (particle physics)</topic><topic>String Theory</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haba, Naoyuki</creatorcontrib><creatorcontrib>Matsumoto, Shigeki</creatorcontrib><creatorcontrib>Okada, Nobuchika</creatorcontrib><creatorcontrib>Yamashita, Toshifumi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haba, Naoyuki</au><au>Matsumoto, Shigeki</au><au>Okada, Nobuchika</au><au>Yamashita, Toshifumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gauge-Higgs dark matter</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>2010</volume><issue>3</issue><artnum>64</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)×U(1)
X
gauge-Higgs unification model compactified on the
S
1
/
Z
2
with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/JHEP03(2010)064</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2010-03, Vol.2010 (3), Article 64 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_journals_2398003269 |
source | Springer Nature OA Free Journals |
subjects | Boundary conditions Classical and Quantum Gravitation Dark matter Elastic scattering Elementary Particles Fermions High energy physics Mathematical models Nucleons Parameter identification Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Relativity Theory Scattering cross sections Standard model (particle physics) String Theory Symmetry |
title | Gauge-Higgs dark matter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gauge-Higgs%20dark%20matter&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Haba,%20Naoyuki&rft.date=2010-03-01&rft.volume=2010&rft.issue=3&rft.artnum=64&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP03(2010)064&rft_dat=%3Cproquest_C6C%3E2398003269%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398003269&rft_id=info:pmid/&rfr_iscdi=true |