An electrostatic interpretation of the zeros of sieved ultraspherical polynomials
In an earlier work [Castillo et al., J. Math. Anal. Appl. 455, 1801–1821 (2017)], it was proved that the semiclassical class of orthogonal polynomials is stable under polynomial transformations. In this work, we use this fact to derive in a unified way old and new properties concerning the sieved ul...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2020-05, Vol.61 (5) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 61 |
creator | Castillo, K. de Jesus, M. N. Petronilho, J. |
description | In an earlier work [Castillo et al., J. Math. Anal. Appl. 455, 1801–1821 (2017)], it was proved that the semiclassical class of orthogonal polynomials is stable under polynomial transformations. In this work, we use this fact to derive in a unified way old and new properties concerning the sieved ultraspherical polynomials of the first and second kind. In particular, we derive ordinary differential equations for these polynomials. As an application, we use the differential equation for sieved ultraspherical polynomials of the first kind to deduce that the zeros of these polynomials mark the locations of a set of particles that are in electrostatic equilibrium with respect to a particular external field. |
doi_str_mv | 10.1063/1.5063333 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2397913407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397913407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-5959b14a51cbf180edfa9c505f03fe87755a5f13ad6a8141b2650d789ec8a47d3</originalsourceid><addsrcrecordid>eNqdkE9LAzEQxYMoWKsHv8GCJ4Wtmc1mkz2W4j8oiKDnkGYndMt2syZpoX56U7bg3bk8HvyYmfcIuQU6A1qxR5jxJGnOyASorHNRcXlOJpQWRV6UUl6SqxA2lALIspyQj3mfYYcmeheijq3J2j6iHzweneszZ7O4xuwHE3A0ocU9Ntmui16HYY2-NbrLBtcderdtdReuyYVNgjcnnZKv56fPxWu-fH95W8yXuWGFiDmveb2CUnMwKwuSYmN1bTjlljKLUgjONbfAdFNpCSWsiorTRsgajdSlaNiU3I17B---dxii2rid79NJVbBa1MBKKhJ1P1Im_R88WjX4dqv9QQFVx8YUqFNjiX0Y2WDaMf3_4L3zf6AaGst-ATdHemI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397913407</pqid></control><display><type>article</type><title>An electrostatic interpretation of the zeros of sieved ultraspherical polynomials</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Castillo, K. ; de Jesus, M. N. ; Petronilho, J.</creator><creatorcontrib>Castillo, K. ; de Jesus, M. N. ; Petronilho, J.</creatorcontrib><description>In an earlier work [Castillo et al., J. Math. Anal. Appl. 455, 1801–1821 (2017)], it was proved that the semiclassical class of orthogonal polynomials is stable under polynomial transformations. In this work, we use this fact to derive in a unified way old and new properties concerning the sieved ultraspherical polynomials of the first and second kind. In particular, we derive ordinary differential equations for these polynomials. As an application, we use the differential equation for sieved ultraspherical polynomials of the first kind to deduce that the zeros of these polynomials mark the locations of a set of particles that are in electrostatic equilibrium with respect to a particular external field.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.5063333</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Differential equations ; Ordinary differential equations ; Physics ; Polynomials</subject><ispartof>Journal of mathematical physics, 2020-05, Vol.61 (5)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-5959b14a51cbf180edfa9c505f03fe87755a5f13ad6a8141b2650d789ec8a47d3</citedby><cites>FETCH-LOGICAL-c327t-5959b14a51cbf180edfa9c505f03fe87755a5f13ad6a8141b2650d789ec8a47d3</cites><orcidid>0000-0003-0712-7031 ; 0000-0003-4803-8182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.5063333$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Castillo, K.</creatorcontrib><creatorcontrib>de Jesus, M. N.</creatorcontrib><creatorcontrib>Petronilho, J.</creatorcontrib><title>An electrostatic interpretation of the zeros of sieved ultraspherical polynomials</title><title>Journal of mathematical physics</title><description>In an earlier work [Castillo et al., J. Math. Anal. Appl. 455, 1801–1821 (2017)], it was proved that the semiclassical class of orthogonal polynomials is stable under polynomial transformations. In this work, we use this fact to derive in a unified way old and new properties concerning the sieved ultraspherical polynomials of the first and second kind. In particular, we derive ordinary differential equations for these polynomials. As an application, we use the differential equation for sieved ultraspherical polynomials of the first kind to deduce that the zeros of these polynomials mark the locations of a set of particles that are in electrostatic equilibrium with respect to a particular external field.</description><subject>Differential equations</subject><subject>Ordinary differential equations</subject><subject>Physics</subject><subject>Polynomials</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LAzEQxYMoWKsHv8GCJ4Wtmc1mkz2W4j8oiKDnkGYndMt2syZpoX56U7bg3bk8HvyYmfcIuQU6A1qxR5jxJGnOyASorHNRcXlOJpQWRV6UUl6SqxA2lALIspyQj3mfYYcmeheijq3J2j6iHzweneszZ7O4xuwHE3A0ocU9Ntmui16HYY2-NbrLBtcderdtdReuyYVNgjcnnZKv56fPxWu-fH95W8yXuWGFiDmveb2CUnMwKwuSYmN1bTjlljKLUgjONbfAdFNpCSWsiorTRsgajdSlaNiU3I17B---dxii2rid79NJVbBa1MBKKhJ1P1Im_R88WjX4dqv9QQFVx8YUqFNjiX0Y2WDaMf3_4L3zf6AaGst-ATdHemI</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Castillo, K.</creator><creator>de Jesus, M. N.</creator><creator>Petronilho, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0712-7031</orcidid><orcidid>https://orcid.org/0000-0003-4803-8182</orcidid></search><sort><creationdate>20200501</creationdate><title>An electrostatic interpretation of the zeros of sieved ultraspherical polynomials</title><author>Castillo, K. ; de Jesus, M. N. ; Petronilho, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-5959b14a51cbf180edfa9c505f03fe87755a5f13ad6a8141b2650d789ec8a47d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Differential equations</topic><topic>Ordinary differential equations</topic><topic>Physics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo, K.</creatorcontrib><creatorcontrib>de Jesus, M. N.</creatorcontrib><creatorcontrib>Petronilho, J.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo, K.</au><au>de Jesus, M. N.</au><au>Petronilho, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An electrostatic interpretation of the zeros of sieved ultraspherical polynomials</atitle><jtitle>Journal of mathematical physics</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>61</volume><issue>5</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In an earlier work [Castillo et al., J. Math. Anal. Appl. 455, 1801–1821 (2017)], it was proved that the semiclassical class of orthogonal polynomials is stable under polynomial transformations. In this work, we use this fact to derive in a unified way old and new properties concerning the sieved ultraspherical polynomials of the first and second kind. In particular, we derive ordinary differential equations for these polynomials. As an application, we use the differential equation for sieved ultraspherical polynomials of the first kind to deduce that the zeros of these polynomials mark the locations of a set of particles that are in electrostatic equilibrium with respect to a particular external field.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5063333</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0712-7031</orcidid><orcidid>https://orcid.org/0000-0003-4803-8182</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2020-05, Vol.61 (5) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2397913407 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Differential equations Ordinary differential equations Physics Polynomials |
title | An electrostatic interpretation of the zeros of sieved ultraspherical polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20electrostatic%20interpretation%20of%20the%20zeros%20of%20sieved%20ultraspherical%20polynomials&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Castillo,%20K.&rft.date=2020-05-01&rft.volume=61&rft.issue=5&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.5063333&rft_dat=%3Cproquest_cross%3E2397913407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397913407&rft_id=info:pmid/&rfr_iscdi=true |