Head Motion Correction Based on Filtered Backprojection in Helical CT Scanning

Head motion may unexpectedly occur during a CT scan. It thereby results in motion artifacts in a reconstructed image and may lead to a false diagnosis or a failure of diagnosis. To alleviate this motion problem, as a hardware approach, increasing the gantry rotation speed or using an immobilization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2020-05, Vol.39 (5), p.1636-1645
Hauptverfasser: Jang, Seokhwan, Kim, Seungeon, Kim, Mina, Son, Kihong, Lee, Kyoung-Yong, Ra, Jong Beom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1645
container_issue 5
container_start_page 1636
container_title IEEE transactions on medical imaging
container_volume 39
creator Jang, Seokhwan
Kim, Seungeon
Kim, Mina
Son, Kihong
Lee, Kyoung-Yong
Ra, Jong Beom
description Head motion may unexpectedly occur during a CT scan. It thereby results in motion artifacts in a reconstructed image and may lead to a false diagnosis or a failure of diagnosis. To alleviate this motion problem, as a hardware approach, increasing the gantry rotation speed or using an immobilization device is usually considered. These approaches, however, cannot completely resolve the motion problem. Hence, motion estimation (ME) and compensation for it have been explored as a software approach instead. In this paper, adopting the latter approach, we propose a head motion correction algorithm in helical CT scanning, based on filtered backprojection (FBP). For the motion correction, we first introduce a new motion-compensated (MC) reconstruction scheme based on FBP, which is applicable to helical scanning. We then estimate the head motion parameters by using an iterative nonlinear optimization algorithm, or the L-BFGS. Note here that an objective function for the optimization is defined on reconstructed images in each iteration, which are obtained by using the proposed MC reconstruction scheme. Using the estimated motion parameters, we then obtain the final MC reconstructed image. Using numerical and physical phantom datasets along with simulated head motions, we demonstrate that the proposed algorithm can provide significantly improved quality to MC reconstructed images by alleviating motion artifacts.
doi_str_mv 10.1109/TMI.2019.2953974
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2397909848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8903230</ieee_id><sourcerecordid>2317584059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-5c6789a5423fb7290239c34242deb7fa6ef3781938f7a3c9b1e60111eef656fa3</originalsourceid><addsrcrecordid>eNpdkDFPwzAQRi0EoqWwIyGhSCwsKWc7ju2RRpRWamGgSGyR41xQSpoUux3497i0MDDdJ927090j5JLCkFLQd4v5dMiA6iHTgmuZHJE-FULFTCRvx6QPTKoYIGU9cub9EoAmAvQp6XEqBWUS-uRpgqaM5t2m7too65xD-xNHxmMZhTCumw26kEfGfqxdtzwAdRtNsKmtaaJsEb1Y07Z1-35OTirTeLw41AF5HT8sskk8e36cZvez2PJEbmJhU6m0EQnjVSGZBsZ16LCElVjIyqRYcamo5qqShltdUEyBUopYpSKtDB-Q2_3ecNHnFv0mX9XeYtOYFrutz9nuQ5WA0AG9-Ycuu61rw3WB0lKDVokKFOwp6zrvHVb52tUr475yCvnOdR5c5zvX-cF1GLk-LN4WKyz_Bn7lBuBqD9SI-NdWGjjjwL8BEJqAUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397909848</pqid></control><display><type>article</type><title>Head Motion Correction Based on Filtered Backprojection in Helical CT Scanning</title><source>IEEE Electronic Library (IEL)</source><creator>Jang, Seokhwan ; Kim, Seungeon ; Kim, Mina ; Son, Kihong ; Lee, Kyoung-Yong ; Ra, Jong Beom</creator><creatorcontrib>Jang, Seokhwan ; Kim, Seungeon ; Kim, Mina ; Son, Kihong ; Lee, Kyoung-Yong ; Ra, Jong Beom</creatorcontrib><description>Head motion may unexpectedly occur during a CT scan. It thereby results in motion artifacts in a reconstructed image and may lead to a false diagnosis or a failure of diagnosis. To alleviate this motion problem, as a hardware approach, increasing the gantry rotation speed or using an immobilization device is usually considered. These approaches, however, cannot completely resolve the motion problem. Hence, motion estimation (ME) and compensation for it have been explored as a software approach instead. In this paper, adopting the latter approach, we propose a head motion correction algorithm in helical CT scanning, based on filtered backprojection (FBP). For the motion correction, we first introduce a new motion-compensated (MC) reconstruction scheme based on FBP, which is applicable to helical scanning. We then estimate the head motion parameters by using an iterative nonlinear optimization algorithm, or the L-BFGS. Note here that an objective function for the optimization is defined on reconstructed images in each iteration, which are obtained by using the proposed MC reconstruction scheme. Using the estimated motion parameters, we then obtain the final MC reconstructed image. Using numerical and physical phantom datasets along with simulated head motions, we demonstrate that the proposed algorithm can provide significantly improved quality to MC reconstructed images by alleviating motion artifacts.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2953974</identifier><identifier>PMID: 31751270</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Colon ; Computed tomography ; Computer simulation ; Detectors ; Diagnosis ; Filtered backprojection (FBP) ; Geometry ; Head ; head motion correction ; Head movement ; helical CT scanning ; Image quality ; Image reconstruction ; Immobilization ; Iterative methods ; Linear programming ; Medical imaging ; Motion artifacts ; motion estimation ; Motion simulation ; motion-compensated reconstruction ; Objective function ; Optimization ; Parameter estimation ; Scanning</subject><ispartof>IEEE transactions on medical imaging, 2020-05, Vol.39 (5), p.1636-1645</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-5c6789a5423fb7290239c34242deb7fa6ef3781938f7a3c9b1e60111eef656fa3</citedby><cites>FETCH-LOGICAL-c347t-5c6789a5423fb7290239c34242deb7fa6ef3781938f7a3c9b1e60111eef656fa3</cites><orcidid>0000-0003-4105-9028 ; 0000-0002-8370-8631 ; 0000-0002-1502-6399 ; 0000-0002-5923-1677 ; 0000-0002-0999-0982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8903230$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8903230$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31751270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Seokhwan</creatorcontrib><creatorcontrib>Kim, Seungeon</creatorcontrib><creatorcontrib>Kim, Mina</creatorcontrib><creatorcontrib>Son, Kihong</creatorcontrib><creatorcontrib>Lee, Kyoung-Yong</creatorcontrib><creatorcontrib>Ra, Jong Beom</creatorcontrib><title>Head Motion Correction Based on Filtered Backprojection in Helical CT Scanning</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Head motion may unexpectedly occur during a CT scan. It thereby results in motion artifacts in a reconstructed image and may lead to a false diagnosis or a failure of diagnosis. To alleviate this motion problem, as a hardware approach, increasing the gantry rotation speed or using an immobilization device is usually considered. These approaches, however, cannot completely resolve the motion problem. Hence, motion estimation (ME) and compensation for it have been explored as a software approach instead. In this paper, adopting the latter approach, we propose a head motion correction algorithm in helical CT scanning, based on filtered backprojection (FBP). For the motion correction, we first introduce a new motion-compensated (MC) reconstruction scheme based on FBP, which is applicable to helical scanning. We then estimate the head motion parameters by using an iterative nonlinear optimization algorithm, or the L-BFGS. Note here that an objective function for the optimization is defined on reconstructed images in each iteration, which are obtained by using the proposed MC reconstruction scheme. Using the estimated motion parameters, we then obtain the final MC reconstructed image. Using numerical and physical phantom datasets along with simulated head motions, we demonstrate that the proposed algorithm can provide significantly improved quality to MC reconstructed images by alleviating motion artifacts.</description><subject>Algorithms</subject><subject>Colon</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Detectors</subject><subject>Diagnosis</subject><subject>Filtered backprojection (FBP)</subject><subject>Geometry</subject><subject>Head</subject><subject>head motion correction</subject><subject>Head movement</subject><subject>helical CT scanning</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Immobilization</subject><subject>Iterative methods</subject><subject>Linear programming</subject><subject>Medical imaging</subject><subject>Motion artifacts</subject><subject>motion estimation</subject><subject>Motion simulation</subject><subject>motion-compensated reconstruction</subject><subject>Objective function</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Scanning</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAQRi0EoqWwIyGhSCwsKWc7ju2RRpRWamGgSGyR41xQSpoUux3497i0MDDdJ927090j5JLCkFLQd4v5dMiA6iHTgmuZHJE-FULFTCRvx6QPTKoYIGU9cub9EoAmAvQp6XEqBWUS-uRpgqaM5t2m7too65xD-xNHxmMZhTCumw26kEfGfqxdtzwAdRtNsKmtaaJsEb1Y07Z1-35OTirTeLw41AF5HT8sskk8e36cZvez2PJEbmJhU6m0EQnjVSGZBsZ16LCElVjIyqRYcamo5qqShltdUEyBUopYpSKtDB-Q2_3ecNHnFv0mX9XeYtOYFrutz9nuQ5WA0AG9-Ycuu61rw3WB0lKDVokKFOwp6zrvHVb52tUr475yCvnOdR5c5zvX-cF1GLk-LN4WKyz_Bn7lBuBqD9SI-NdWGjjjwL8BEJqAUA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Jang, Seokhwan</creator><creator>Kim, Seungeon</creator><creator>Kim, Mina</creator><creator>Son, Kihong</creator><creator>Lee, Kyoung-Yong</creator><creator>Ra, Jong Beom</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4105-9028</orcidid><orcidid>https://orcid.org/0000-0002-8370-8631</orcidid><orcidid>https://orcid.org/0000-0002-1502-6399</orcidid><orcidid>https://orcid.org/0000-0002-5923-1677</orcidid><orcidid>https://orcid.org/0000-0002-0999-0982</orcidid></search><sort><creationdate>20200501</creationdate><title>Head Motion Correction Based on Filtered Backprojection in Helical CT Scanning</title><author>Jang, Seokhwan ; Kim, Seungeon ; Kim, Mina ; Son, Kihong ; Lee, Kyoung-Yong ; Ra, Jong Beom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-5c6789a5423fb7290239c34242deb7fa6ef3781938f7a3c9b1e60111eef656fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Colon</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Detectors</topic><topic>Diagnosis</topic><topic>Filtered backprojection (FBP)</topic><topic>Geometry</topic><topic>Head</topic><topic>head motion correction</topic><topic>Head movement</topic><topic>helical CT scanning</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Immobilization</topic><topic>Iterative methods</topic><topic>Linear programming</topic><topic>Medical imaging</topic><topic>Motion artifacts</topic><topic>motion estimation</topic><topic>Motion simulation</topic><topic>motion-compensated reconstruction</topic><topic>Objective function</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Scanning</topic><toplevel>online_resources</toplevel><creatorcontrib>Jang, Seokhwan</creatorcontrib><creatorcontrib>Kim, Seungeon</creatorcontrib><creatorcontrib>Kim, Mina</creatorcontrib><creatorcontrib>Son, Kihong</creatorcontrib><creatorcontrib>Lee, Kyoung-Yong</creatorcontrib><creatorcontrib>Ra, Jong Beom</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jang, Seokhwan</au><au>Kim, Seungeon</au><au>Kim, Mina</au><au>Son, Kihong</au><au>Lee, Kyoung-Yong</au><au>Ra, Jong Beom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Head Motion Correction Based on Filtered Backprojection in Helical CT Scanning</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>39</volume><issue>5</issue><spage>1636</spage><epage>1645</epage><pages>1636-1645</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Head motion may unexpectedly occur during a CT scan. It thereby results in motion artifacts in a reconstructed image and may lead to a false diagnosis or a failure of diagnosis. To alleviate this motion problem, as a hardware approach, increasing the gantry rotation speed or using an immobilization device is usually considered. These approaches, however, cannot completely resolve the motion problem. Hence, motion estimation (ME) and compensation for it have been explored as a software approach instead. In this paper, adopting the latter approach, we propose a head motion correction algorithm in helical CT scanning, based on filtered backprojection (FBP). For the motion correction, we first introduce a new motion-compensated (MC) reconstruction scheme based on FBP, which is applicable to helical scanning. We then estimate the head motion parameters by using an iterative nonlinear optimization algorithm, or the L-BFGS. Note here that an objective function for the optimization is defined on reconstructed images in each iteration, which are obtained by using the proposed MC reconstruction scheme. Using the estimated motion parameters, we then obtain the final MC reconstructed image. Using numerical and physical phantom datasets along with simulated head motions, we demonstrate that the proposed algorithm can provide significantly improved quality to MC reconstructed images by alleviating motion artifacts.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31751270</pmid><doi>10.1109/TMI.2019.2953974</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4105-9028</orcidid><orcidid>https://orcid.org/0000-0002-8370-8631</orcidid><orcidid>https://orcid.org/0000-0002-1502-6399</orcidid><orcidid>https://orcid.org/0000-0002-5923-1677</orcidid><orcidid>https://orcid.org/0000-0002-0999-0982</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2020-05, Vol.39 (5), p.1636-1645
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_journals_2397909848
source IEEE Electronic Library (IEL)
subjects Algorithms
Colon
Computed tomography
Computer simulation
Detectors
Diagnosis
Filtered backprojection (FBP)
Geometry
Head
head motion correction
Head movement
helical CT scanning
Image quality
Image reconstruction
Immobilization
Iterative methods
Linear programming
Medical imaging
Motion artifacts
motion estimation
Motion simulation
motion-compensated reconstruction
Objective function
Optimization
Parameter estimation
Scanning
title Head Motion Correction Based on Filtered Backprojection in Helical CT Scanning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Head%20Motion%20Correction%20Based%20on%20Filtered%20Backprojection%20in%20Helical%20CT%20Scanning&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Jang,%20Seokhwan&rft.date=2020-05-01&rft.volume=39&rft.issue=5&rft.spage=1636&rft.epage=1645&rft.pages=1636-1645&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2953974&rft_dat=%3Cproquest_RIE%3E2317584059%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397909848&rft_id=info:pmid/31751270&rft_ieee_id=8903230&rfr_iscdi=true