A Scalable Neuromorphic Architecture to Efficiently Compute Spatial Image Filtering of High Image Resolution and Size
In this work, we propose a spiking P neuron whichis capable of performing spatial filtering operations by using new variants of the spiking neural P systems, such as synaptic weights and rules on the synapses. The inclusion of these variants have allowed us to create a compact spiking P neuron with...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2020-02, Vol.18 (2), p.327-335 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng ; por |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 335 |
---|---|
container_issue | 2 |
container_start_page | 327 |
container_title | Revista IEEE América Latina |
container_volume | 18 |
creator | Abarca, Marco Sanchez, Giovanny Garcia, Luis Avalos, Juan Gerardo Frias, Thania Toscano, Karina Perez-Meana, Hector |
description | In this work, we propose a spiking P neuron whichis capable of performing spatial filtering operations by using new variants of the spiking neural P systems, such as synaptic weights and rules on the synapses. The inclusion of these variants have allowed us to create a compact spiking P neuron with minimal number of synapses and low computational complexity of the spiking rules. In addition, we propose a multi-FPGA neuromorphic system to support an array of very large-scale spiking P neurons to process high image resolution at high processing speeds. These neurons can be simulated by using a scalable configurable parallel hardware architecture, where its basic processing unit is a single spiking P neuron. Our results show that the proposed architecture is up to 54 and 12 times faster when compared to advanced Graphical Processing Units (GPU) and high performance CPUs, respectively. On the other hand, our proposal is 55x103 times faster than the best of existingFPGA-based neuromorphic solution. |
doi_str_mv | 10.1109/TLA.2020.9085287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2397908390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9085287</ieee_id><sourcerecordid>2397908390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-420ba189c7f405fe8b4c512acd1ce55ce5c75d4ceb26ee6f4c70586cbda8e0203</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3wUvA89Yk-5UcS2ltoSjYeg7Z7KRN2d2s2eyh_vVuaRUPwwwz772BH0KPlEwoJeJlu55OGGFkIghPGc-v0IimCY-IEOz633yL7rruQEjMMx6PUD_FG60qVVSA36D3rna-3VuNp17vbQAdeg84ODw3xmoLTaiOeObqtg-AN60KVlV4Vasd4IWtAnjb7LAzeGl3-8v-AzpX9cG6BqumxBv7Dffoxqiqg4dLH6PPxXw7W0br99fVbLqONBM0RAkjhaJc6NwkJDXAi0SnlCldUg1pOpTO0zLRULAMIDOJzknKM12UisPAIh6j53Nu691XD12QB9f7ZngpWSzyAVUsTipyVmnvus6Dka23tfJHSYk8wZUDXHmCKy9wB8vT2WIB4E_-e_0BVut2-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397908390</pqid></control><display><type>article</type><title>A Scalable Neuromorphic Architecture to Efficiently Compute Spatial Image Filtering of High Image Resolution and Size</title><source>IEEE Electronic Library (IEL)</source><creator>Abarca, Marco ; Sanchez, Giovanny ; Garcia, Luis ; Avalos, Juan Gerardo ; Frias, Thania ; Toscano, Karina ; Perez-Meana, Hector</creator><creatorcontrib>Abarca, Marco ; Sanchez, Giovanny ; Garcia, Luis ; Avalos, Juan Gerardo ; Frias, Thania ; Toscano, Karina ; Perez-Meana, Hector</creatorcontrib><description>In this work, we propose a spiking P neuron whichis capable of performing spatial filtering operations by using new variants of the spiking neural P systems, such as synaptic weights and rules on the synapses. The inclusion of these variants have allowed us to create a compact spiking P neuron with minimal number of synapses and low computational complexity of the spiking rules. In addition, we propose a multi-FPGA neuromorphic system to support an array of very large-scale spiking P neurons to process high image resolution at high processing speeds. These neurons can be simulated by using a scalable configurable parallel hardware architecture, where its basic processing unit is a single spiking P neuron. Our results show that the proposed architecture is up to 54 and 12 times faster when compared to advanced Graphical Processing Units (GPU) and high performance CPUs, respectively. On the other hand, our proposal is 55x103 times faster than the best of existingFPGA-based neuromorphic solution.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2020.9085287</identifier><language>eng ; por</language><publisher>Los Alamitos: IEEE</publisher><subject>Computer architecture ; Computer simulation ; Field programmable gate arrays ; FPGA ; Graphics processing units ; Hardware ; Image filters ; Image resolution ; Kernel ; Neuromorphics ; Neurons ; Silicon compounds ; Spatial filtering ; Spatial image filtering ; Spiking ; Spiking neural P systems ; Synapses</subject><ispartof>Revista IEEE América Latina, 2020-02, Vol.18 (2), p.327-335</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-420ba189c7f405fe8b4c512acd1ce55ce5c75d4ceb26ee6f4c70586cbda8e0203</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9085287$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9085287$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abarca, Marco</creatorcontrib><creatorcontrib>Sanchez, Giovanny</creatorcontrib><creatorcontrib>Garcia, Luis</creatorcontrib><creatorcontrib>Avalos, Juan Gerardo</creatorcontrib><creatorcontrib>Frias, Thania</creatorcontrib><creatorcontrib>Toscano, Karina</creatorcontrib><creatorcontrib>Perez-Meana, Hector</creatorcontrib><title>A Scalable Neuromorphic Architecture to Efficiently Compute Spatial Image Filtering of High Image Resolution and Size</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>In this work, we propose a spiking P neuron whichis capable of performing spatial filtering operations by using new variants of the spiking neural P systems, such as synaptic weights and rules on the synapses. The inclusion of these variants have allowed us to create a compact spiking P neuron with minimal number of synapses and low computational complexity of the spiking rules. In addition, we propose a multi-FPGA neuromorphic system to support an array of very large-scale spiking P neurons to process high image resolution at high processing speeds. These neurons can be simulated by using a scalable configurable parallel hardware architecture, where its basic processing unit is a single spiking P neuron. Our results show that the proposed architecture is up to 54 and 12 times faster when compared to advanced Graphical Processing Units (GPU) and high performance CPUs, respectively. On the other hand, our proposal is 55x103 times faster than the best of existingFPGA-based neuromorphic solution.</description><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Graphics processing units</subject><subject>Hardware</subject><subject>Image filters</subject><subject>Image resolution</subject><subject>Kernel</subject><subject>Neuromorphics</subject><subject>Neurons</subject><subject>Silicon compounds</subject><subject>Spatial filtering</subject><subject>Spatial image filtering</subject><subject>Spiking</subject><subject>Spiking neural P systems</subject><subject>Synapses</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3wUvA89Yk-5UcS2ltoSjYeg7Z7KRN2d2s2eyh_vVuaRUPwwwz772BH0KPlEwoJeJlu55OGGFkIghPGc-v0IimCY-IEOz633yL7rruQEjMMx6PUD_FG60qVVSA36D3rna-3VuNp17vbQAdeg84ODw3xmoLTaiOeObqtg-AN60KVlV4Vasd4IWtAnjb7LAzeGl3-8v-AzpX9cG6BqumxBv7Dffoxqiqg4dLH6PPxXw7W0br99fVbLqONBM0RAkjhaJc6NwkJDXAi0SnlCldUg1pOpTO0zLRULAMIDOJzknKM12UisPAIh6j53Nu691XD12QB9f7ZngpWSzyAVUsTipyVmnvus6Dka23tfJHSYk8wZUDXHmCKy9wB8vT2WIB4E_-e_0BVut2-w</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Abarca, Marco</creator><creator>Sanchez, Giovanny</creator><creator>Garcia, Luis</creator><creator>Avalos, Juan Gerardo</creator><creator>Frias, Thania</creator><creator>Toscano, Karina</creator><creator>Perez-Meana, Hector</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200201</creationdate><title>A Scalable Neuromorphic Architecture to Efficiently Compute Spatial Image Filtering of High Image Resolution and Size</title><author>Abarca, Marco ; Sanchez, Giovanny ; Garcia, Luis ; Avalos, Juan Gerardo ; Frias, Thania ; Toscano, Karina ; Perez-Meana, Hector</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-420ba189c7f405fe8b4c512acd1ce55ce5c75d4ceb26ee6f4c70586cbda8e0203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; por</language><creationdate>2020</creationdate><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Graphics processing units</topic><topic>Hardware</topic><topic>Image filters</topic><topic>Image resolution</topic><topic>Kernel</topic><topic>Neuromorphics</topic><topic>Neurons</topic><topic>Silicon compounds</topic><topic>Spatial filtering</topic><topic>Spatial image filtering</topic><topic>Spiking</topic><topic>Spiking neural P systems</topic><topic>Synapses</topic><toplevel>online_resources</toplevel><creatorcontrib>Abarca, Marco</creatorcontrib><creatorcontrib>Sanchez, Giovanny</creatorcontrib><creatorcontrib>Garcia, Luis</creatorcontrib><creatorcontrib>Avalos, Juan Gerardo</creatorcontrib><creatorcontrib>Frias, Thania</creatorcontrib><creatorcontrib>Toscano, Karina</creatorcontrib><creatorcontrib>Perez-Meana, Hector</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abarca, Marco</au><au>Sanchez, Giovanny</au><au>Garcia, Luis</au><au>Avalos, Juan Gerardo</au><au>Frias, Thania</au><au>Toscano, Karina</au><au>Perez-Meana, Hector</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Scalable Neuromorphic Architecture to Efficiently Compute Spatial Image Filtering of High Image Resolution and Size</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>18</volume><issue>2</issue><spage>327</spage><epage>335</epage><pages>327-335</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>In this work, we propose a spiking P neuron whichis capable of performing spatial filtering operations by using new variants of the spiking neural P systems, such as synaptic weights and rules on the synapses. The inclusion of these variants have allowed us to create a compact spiking P neuron with minimal number of synapses and low computational complexity of the spiking rules. In addition, we propose a multi-FPGA neuromorphic system to support an array of very large-scale spiking P neurons to process high image resolution at high processing speeds. These neurons can be simulated by using a scalable configurable parallel hardware architecture, where its basic processing unit is a single spiking P neuron. Our results show that the proposed architecture is up to 54 and 12 times faster when compared to advanced Graphical Processing Units (GPU) and high performance CPUs, respectively. On the other hand, our proposal is 55x103 times faster than the best of existingFPGA-based neuromorphic solution.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2020.9085287</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2020-02, Vol.18 (2), p.327-335 |
issn | 1548-0992 1548-0992 |
language | eng ; por |
recordid | cdi_proquest_journals_2397908390 |
source | IEEE Electronic Library (IEL) |
subjects | Computer architecture Computer simulation Field programmable gate arrays FPGA Graphics processing units Hardware Image filters Image resolution Kernel Neuromorphics Neurons Silicon compounds Spatial filtering Spatial image filtering Spiking Spiking neural P systems Synapses |
title | A Scalable Neuromorphic Architecture to Efficiently Compute Spatial Image Filtering of High Image Resolution and Size |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Scalable%20Neuromorphic%20Architecture%20to%20Efficiently%20Compute%20Spatial%20Image%20Filtering%20of%20High%20Image%20Resolution%20and%20Size&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Abarca,%20Marco&rft.date=2020-02-01&rft.volume=18&rft.issue=2&rft.spage=327&rft.epage=335&rft.pages=327-335&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2020.9085287&rft_dat=%3Cproquest_RIE%3E2397908390%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397908390&rft_id=info:pmid/&rft_ieee_id=9085287&rfr_iscdi=true |