A Scalable Neuromorphic Architecture to Efficiently Compute Spatial Image Filtering of High Image Resolution and Size

In this work, we propose a spiking P neuron whichis capable of performing spatial filtering operations by using new variants of the spiking neural P systems, such as synaptic weights and rules on the synapses. The inclusion of these variants have allowed us to create a compact spiking P neuron with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2020-02, Vol.18 (2), p.327-335
Hauptverfasser: Abarca, Marco, Sanchez, Giovanny, Garcia, Luis, Avalos, Juan Gerardo, Frias, Thania, Toscano, Karina, Perez-Meana, Hector
Format: Artikel
Sprache:eng ; por
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue 2
container_start_page 327
container_title Revista IEEE América Latina
container_volume 18
creator Abarca, Marco
Sanchez, Giovanny
Garcia, Luis
Avalos, Juan Gerardo
Frias, Thania
Toscano, Karina
Perez-Meana, Hector
description In this work, we propose a spiking P neuron whichis capable of performing spatial filtering operations by using new variants of the spiking neural P systems, such as synaptic weights and rules on the synapses. The inclusion of these variants have allowed us to create a compact spiking P neuron with minimal number of synapses and low computational complexity of the spiking rules. In addition, we propose a multi-FPGA neuromorphic system to support an array of very large-scale spiking P neurons to process high image resolution at high processing speeds. These neurons can be simulated by using a scalable configurable parallel hardware architecture, where its basic processing unit is a single spiking P neuron. Our results show that the proposed architecture is up to 54 and 12 times faster when compared to advanced Graphical Processing Units (GPU) and high performance CPUs, respectively. On the other hand, our proposal is 55x103 times faster than the best of existingFPGA-based neuromorphic solution.
doi_str_mv 10.1109/TLA.2020.9085287
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2397908390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9085287</ieee_id><sourcerecordid>2397908390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-420ba189c7f405fe8b4c512acd1ce55ce5c75d4ceb26ee6f4c70586cbda8e0203</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3wUvA89Yk-5UcS2ltoSjYeg7Z7KRN2d2s2eyh_vVuaRUPwwwz772BH0KPlEwoJeJlu55OGGFkIghPGc-v0IimCY-IEOz633yL7rruQEjMMx6PUD_FG60qVVSA36D3rna-3VuNp17vbQAdeg84ODw3xmoLTaiOeObqtg-AN60KVlV4Vasd4IWtAnjb7LAzeGl3-8v-AzpX9cG6BqumxBv7Dffoxqiqg4dLH6PPxXw7W0br99fVbLqONBM0RAkjhaJc6NwkJDXAi0SnlCldUg1pOpTO0zLRULAMIDOJzknKM12UisPAIh6j53Nu691XD12QB9f7ZngpWSzyAVUsTipyVmnvus6Dka23tfJHSYk8wZUDXHmCKy9wB8vT2WIB4E_-e_0BVut2-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397908390</pqid></control><display><type>article</type><title>A Scalable Neuromorphic Architecture to Efficiently Compute Spatial Image Filtering of High Image Resolution and Size</title><source>IEEE Electronic Library (IEL)</source><creator>Abarca, Marco ; Sanchez, Giovanny ; Garcia, Luis ; Avalos, Juan Gerardo ; Frias, Thania ; Toscano, Karina ; Perez-Meana, Hector</creator><creatorcontrib>Abarca, Marco ; Sanchez, Giovanny ; Garcia, Luis ; Avalos, Juan Gerardo ; Frias, Thania ; Toscano, Karina ; Perez-Meana, Hector</creatorcontrib><description>In this work, we propose a spiking P neuron whichis capable of performing spatial filtering operations by using new variants of the spiking neural P systems, such as synaptic weights and rules on the synapses. The inclusion of these variants have allowed us to create a compact spiking P neuron with minimal number of synapses and low computational complexity of the spiking rules. In addition, we propose a multi-FPGA neuromorphic system to support an array of very large-scale spiking P neurons to process high image resolution at high processing speeds. These neurons can be simulated by using a scalable configurable parallel hardware architecture, where its basic processing unit is a single spiking P neuron. Our results show that the proposed architecture is up to 54 and 12 times faster when compared to advanced Graphical Processing Units (GPU) and high performance CPUs, respectively. On the other hand, our proposal is 55x103 times faster than the best of existingFPGA-based neuromorphic solution.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2020.9085287</identifier><language>eng ; por</language><publisher>Los Alamitos: IEEE</publisher><subject>Computer architecture ; Computer simulation ; Field programmable gate arrays ; FPGA ; Graphics processing units ; Hardware ; Image filters ; Image resolution ; Kernel ; Neuromorphics ; Neurons ; Silicon compounds ; Spatial filtering ; Spatial image filtering ; Spiking ; Spiking neural P systems ; Synapses</subject><ispartof>Revista IEEE América Latina, 2020-02, Vol.18 (2), p.327-335</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-420ba189c7f405fe8b4c512acd1ce55ce5c75d4ceb26ee6f4c70586cbda8e0203</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9085287$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9085287$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abarca, Marco</creatorcontrib><creatorcontrib>Sanchez, Giovanny</creatorcontrib><creatorcontrib>Garcia, Luis</creatorcontrib><creatorcontrib>Avalos, Juan Gerardo</creatorcontrib><creatorcontrib>Frias, Thania</creatorcontrib><creatorcontrib>Toscano, Karina</creatorcontrib><creatorcontrib>Perez-Meana, Hector</creatorcontrib><title>A Scalable Neuromorphic Architecture to Efficiently Compute Spatial Image Filtering of High Image Resolution and Size</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>In this work, we propose a spiking P neuron whichis capable of performing spatial filtering operations by using new variants of the spiking neural P systems, such as synaptic weights and rules on the synapses. The inclusion of these variants have allowed us to create a compact spiking P neuron with minimal number of synapses and low computational complexity of the spiking rules. In addition, we propose a multi-FPGA neuromorphic system to support an array of very large-scale spiking P neurons to process high image resolution at high processing speeds. These neurons can be simulated by using a scalable configurable parallel hardware architecture, where its basic processing unit is a single spiking P neuron. Our results show that the proposed architecture is up to 54 and 12 times faster when compared to advanced Graphical Processing Units (GPU) and high performance CPUs, respectively. On the other hand, our proposal is 55x103 times faster than the best of existingFPGA-based neuromorphic solution.</description><subject>Computer architecture</subject><subject>Computer simulation</subject><subject>Field programmable gate arrays</subject><subject>FPGA</subject><subject>Graphics processing units</subject><subject>Hardware</subject><subject>Image filters</subject><subject>Image resolution</subject><subject>Kernel</subject><subject>Neuromorphics</subject><subject>Neurons</subject><subject>Silicon compounds</subject><subject>Spatial filtering</subject><subject>Spatial image filtering</subject><subject>Spiking</subject><subject>Spiking neural P systems</subject><subject>Synapses</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3wUvA89Yk-5UcS2ltoSjYeg7Z7KRN2d2s2eyh_vVuaRUPwwwz772BH0KPlEwoJeJlu55OGGFkIghPGc-v0IimCY-IEOz633yL7rruQEjMMx6PUD_FG60qVVSA36D3rna-3VuNp17vbQAdeg84ODw3xmoLTaiOeObqtg-AN60KVlV4Vasd4IWtAnjb7LAzeGl3-8v-AzpX9cG6BqumxBv7Dffoxqiqg4dLH6PPxXw7W0br99fVbLqONBM0RAkjhaJc6NwkJDXAi0SnlCldUg1pOpTO0zLRULAMIDOJzknKM12UisPAIh6j53Nu691XD12QB9f7ZngpWSzyAVUsTipyVmnvus6Dka23tfJHSYk8wZUDXHmCKy9wB8vT2WIB4E_-e_0BVut2-w</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Abarca, Marco</creator><creator>Sanchez, Giovanny</creator><creator>Garcia, Luis</creator><creator>Avalos, Juan Gerardo</creator><creator>Frias, Thania</creator><creator>Toscano, Karina</creator><creator>Perez-Meana, Hector</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200201</creationdate><title>A Scalable Neuromorphic Architecture to Efficiently Compute Spatial Image Filtering of High Image Resolution and Size</title><author>Abarca, Marco ; Sanchez, Giovanny ; Garcia, Luis ; Avalos, Juan Gerardo ; Frias, Thania ; Toscano, Karina ; Perez-Meana, Hector</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-420ba189c7f405fe8b4c512acd1ce55ce5c75d4ceb26ee6f4c70586cbda8e0203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; por</language><creationdate>2020</creationdate><topic>Computer architecture</topic><topic>Computer simulation</topic><topic>Field programmable gate arrays</topic><topic>FPGA</topic><topic>Graphics processing units</topic><topic>Hardware</topic><topic>Image filters</topic><topic>Image resolution</topic><topic>Kernel</topic><topic>Neuromorphics</topic><topic>Neurons</topic><topic>Silicon compounds</topic><topic>Spatial filtering</topic><topic>Spatial image filtering</topic><topic>Spiking</topic><topic>Spiking neural P systems</topic><topic>Synapses</topic><toplevel>online_resources</toplevel><creatorcontrib>Abarca, Marco</creatorcontrib><creatorcontrib>Sanchez, Giovanny</creatorcontrib><creatorcontrib>Garcia, Luis</creatorcontrib><creatorcontrib>Avalos, Juan Gerardo</creatorcontrib><creatorcontrib>Frias, Thania</creatorcontrib><creatorcontrib>Toscano, Karina</creatorcontrib><creatorcontrib>Perez-Meana, Hector</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abarca, Marco</au><au>Sanchez, Giovanny</au><au>Garcia, Luis</au><au>Avalos, Juan Gerardo</au><au>Frias, Thania</au><au>Toscano, Karina</au><au>Perez-Meana, Hector</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Scalable Neuromorphic Architecture to Efficiently Compute Spatial Image Filtering of High Image Resolution and Size</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>18</volume><issue>2</issue><spage>327</spage><epage>335</epage><pages>327-335</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>In this work, we propose a spiking P neuron whichis capable of performing spatial filtering operations by using new variants of the spiking neural P systems, such as synaptic weights and rules on the synapses. The inclusion of these variants have allowed us to create a compact spiking P neuron with minimal number of synapses and low computational complexity of the spiking rules. In addition, we propose a multi-FPGA neuromorphic system to support an array of very large-scale spiking P neurons to process high image resolution at high processing speeds. These neurons can be simulated by using a scalable configurable parallel hardware architecture, where its basic processing unit is a single spiking P neuron. Our results show that the proposed architecture is up to 54 and 12 times faster when compared to advanced Graphical Processing Units (GPU) and high performance CPUs, respectively. On the other hand, our proposal is 55x103 times faster than the best of existingFPGA-based neuromorphic solution.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2020.9085287</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2020-02, Vol.18 (2), p.327-335
issn 1548-0992
1548-0992
language eng ; por
recordid cdi_proquest_journals_2397908390
source IEEE Electronic Library (IEL)
subjects Computer architecture
Computer simulation
Field programmable gate arrays
FPGA
Graphics processing units
Hardware
Image filters
Image resolution
Kernel
Neuromorphics
Neurons
Silicon compounds
Spatial filtering
Spatial image filtering
Spiking
Spiking neural P systems
Synapses
title A Scalable Neuromorphic Architecture to Efficiently Compute Spatial Image Filtering of High Image Resolution and Size
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Scalable%20Neuromorphic%20Architecture%20to%20Efficiently%20Compute%20Spatial%20Image%20Filtering%20of%20High%20Image%20Resolution%20and%20Size&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Abarca,%20Marco&rft.date=2020-02-01&rft.volume=18&rft.issue=2&rft.spage=327&rft.epage=335&rft.pages=327-335&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2020.9085287&rft_dat=%3Cproquest_RIE%3E2397908390%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397908390&rft_id=info:pmid/&rft_ieee_id=9085287&rfr_iscdi=true