Pointwise Characterizations of Even Order Sobolev Spaces via Derivatives of Ball Averages

Let $\ell \in \mathbb{N}$ and $p\in (1,\infty ]$ . In this article, the authors establish several equivalent characterizations of Sobolev spaces $W^{2\ell +2,p}(\mathbb{R}^{n})$ in terms of derivatives of ball averages. The novelty in the results of this article is that these equivalent characteriza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2019-09, Vol.62 (3), p.681-699
Hauptverfasser: Xie, Guangheng, Yang, Dachun, Yuan, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 699
container_issue 3
container_start_page 681
container_title Canadian mathematical bulletin
container_volume 62
creator Xie, Guangheng
Yang, Dachun
Yuan, Wen
description Let $\ell \in \mathbb{N}$ and $p\in (1,\infty ]$ . In this article, the authors establish several equivalent characterizations of Sobolev spaces $W^{2\ell +2,p}(\mathbb{R}^{n})$ in terms of derivatives of ball averages. The novelty in the results of this article is that these equivalent characterizations reveal some new connections between the smoothness indices of Sobolev spaces and the derivatives on the radius of ball averages and also that, to obtain the corresponding results for higher order Sobolev spaces, the authors first establish the combinatorial equality: for any $\ell \in \mathbb{N}$ and $k\in \{0,\ldots ,\ell -1\}$ , $\sum _{j=0}^{2\ell }(-1)^{j}\binom{2\ell }{j}|\ell -j|^{2k}=0$ .
doi_str_mv 10.4153/S000843951800005X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2397889469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_S000843951800005X</cupid><sourcerecordid>2397889469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-bb4d9f48594c456ff01dd7444b3dd86427dc1df6f2c5250be427a5eb6142611c3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgyk8xjWWt9QKFCFXQ15HFTU6aTmkxH9Neb2oILcXUv93znXDgInVNyySjPruaEkJJlFadl3Ah_OUADyqo8YWlZHKLBVk62-jE6CWFJCC14wQfo9dHZtvuwAfD4TXihOvD2S3TWtQE7gyc9tHjmNXg8d9I10OP5WigIuLcC30S4j3APP_C1aBo86sGLBYRTdGREE-BsP4fo-XbyNL5PprO7h_FomqiMFl0iJdOVYSWvmGI8N4ZQrQvGmMy0LnOWFlpRbXKTKp5yIiFeBAeZU5bmlKpsiC52uWvv3jcQunrpNr6NL-s0q4qyrFheRYruKOVdCB5MvfZ2JfxnTUm9bbD-02D0ZHuPWElv9QJ-o_93fQPxUXLG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397889469</pqid></control><display><type>article</type><title>Pointwise Characterizations of Even Order Sobolev Spaces via Derivatives of Ball Averages</title><source>Cambridge Journals</source><creator>Xie, Guangheng ; Yang, Dachun ; Yuan, Wen</creator><creatorcontrib>Xie, Guangheng ; Yang, Dachun ; Yuan, Wen</creatorcontrib><description>Let $\ell \in \mathbb{N}$ and $p\in (1,\infty ]$ . In this article, the authors establish several equivalent characterizations of Sobolev spaces $W^{2\ell +2,p}(\mathbb{R}^{n})$ in terms of derivatives of ball averages. The novelty in the results of this article is that these equivalent characterizations reveal some new connections between the smoothness indices of Sobolev spaces and the derivatives on the radius of ball averages and also that, to obtain the corresponding results for higher order Sobolev spaces, the authors first establish the combinatorial equality: for any $\ell \in \mathbb{N}$ and $k\in \{0,\ldots ,\ell -1\}$ , $\sum _{j=0}^{2\ell }(-1)^{j}\binom{2\ell }{j}|\ell -j|^{2k}=0$ .</description><identifier>ISSN: 0008-4395</identifier><identifier>EISSN: 1496-4287</identifier><identifier>DOI: 10.4153/S000843951800005X</identifier><language>eng</language><publisher>Canada: Canadian Mathematical Society</publisher><subject>Calculus of variations ; Combinatorial analysis ; Derivatives ; Equivalence ; Smoothness ; Sobolev space</subject><ispartof>Canadian mathematical bulletin, 2019-09, Vol.62 (3), p.681-699</ispartof><rights>Canadian Mathematical Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-bb4d9f48594c456ff01dd7444b3dd86427dc1df6f2c5250be427a5eb6142611c3</citedby><cites>FETCH-LOGICAL-c317t-bb4d9f48594c456ff01dd7444b3dd86427dc1df6f2c5250be427a5eb6142611c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S000843951800005X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,27929,27930,55633</link.rule.ids></links><search><creatorcontrib>Xie, Guangheng</creatorcontrib><creatorcontrib>Yang, Dachun</creatorcontrib><creatorcontrib>Yuan, Wen</creatorcontrib><title>Pointwise Characterizations of Even Order Sobolev Spaces via Derivatives of Ball Averages</title><title>Canadian mathematical bulletin</title><addtitle>Can. Math. Bull</addtitle><description>Let $\ell \in \mathbb{N}$ and $p\in (1,\infty ]$ . In this article, the authors establish several equivalent characterizations of Sobolev spaces $W^{2\ell +2,p}(\mathbb{R}^{n})$ in terms of derivatives of ball averages. The novelty in the results of this article is that these equivalent characterizations reveal some new connections between the smoothness indices of Sobolev spaces and the derivatives on the radius of ball averages and also that, to obtain the corresponding results for higher order Sobolev spaces, the authors first establish the combinatorial equality: for any $\ell \in \mathbb{N}$ and $k\in \{0,\ldots ,\ell -1\}$ , $\sum _{j=0}^{2\ell }(-1)^{j}\binom{2\ell }{j}|\ell -j|^{2k}=0$ .</description><subject>Calculus of variations</subject><subject>Combinatorial analysis</subject><subject>Derivatives</subject><subject>Equivalence</subject><subject>Smoothness</subject><subject>Sobolev space</subject><issn>0008-4395</issn><issn>1496-4287</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgyk8xjWWt9QKFCFXQ15HFTU6aTmkxH9Neb2oILcXUv93znXDgInVNyySjPruaEkJJlFadl3Ah_OUADyqo8YWlZHKLBVk62-jE6CWFJCC14wQfo9dHZtvuwAfD4TXihOvD2S3TWtQE7gyc9tHjmNXg8d9I10OP5WigIuLcC30S4j3APP_C1aBo86sGLBYRTdGREE-BsP4fo-XbyNL5PprO7h_FomqiMFl0iJdOVYSWvmGI8N4ZQrQvGmMy0LnOWFlpRbXKTKp5yIiFeBAeZU5bmlKpsiC52uWvv3jcQunrpNr6NL-s0q4qyrFheRYruKOVdCB5MvfZ2JfxnTUm9bbD-02D0ZHuPWElv9QJ-o_93fQPxUXLG</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Xie, Guangheng</creator><creator>Yang, Dachun</creator><creator>Yuan, Wen</creator><general>Canadian Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201909</creationdate><title>Pointwise Characterizations of Even Order Sobolev Spaces via Derivatives of Ball Averages</title><author>Xie, Guangheng ; Yang, Dachun ; Yuan, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-bb4d9f48594c456ff01dd7444b3dd86427dc1df6f2c5250be427a5eb6142611c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Calculus of variations</topic><topic>Combinatorial analysis</topic><topic>Derivatives</topic><topic>Equivalence</topic><topic>Smoothness</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Guangheng</creatorcontrib><creatorcontrib>Yang, Dachun</creatorcontrib><creatorcontrib>Yuan, Wen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business &amp; Current Affairs Database</collection><collection>Canadian Business &amp; Current Affairs Database (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Canadian mathematical bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Guangheng</au><au>Yang, Dachun</au><au>Yuan, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pointwise Characterizations of Even Order Sobolev Spaces via Derivatives of Ball Averages</atitle><jtitle>Canadian mathematical bulletin</jtitle><addtitle>Can. Math. Bull</addtitle><date>2019-09</date><risdate>2019</risdate><volume>62</volume><issue>3</issue><spage>681</spage><epage>699</epage><pages>681-699</pages><issn>0008-4395</issn><eissn>1496-4287</eissn><abstract>Let $\ell \in \mathbb{N}$ and $p\in (1,\infty ]$ . In this article, the authors establish several equivalent characterizations of Sobolev spaces $W^{2\ell +2,p}(\mathbb{R}^{n})$ in terms of derivatives of ball averages. The novelty in the results of this article is that these equivalent characterizations reveal some new connections between the smoothness indices of Sobolev spaces and the derivatives on the radius of ball averages and also that, to obtain the corresponding results for higher order Sobolev spaces, the authors first establish the combinatorial equality: for any $\ell \in \mathbb{N}$ and $k\in \{0,\ldots ,\ell -1\}$ , $\sum _{j=0}^{2\ell }(-1)^{j}\binom{2\ell }{j}|\ell -j|^{2k}=0$ .</abstract><cop>Canada</cop><pub>Canadian Mathematical Society</pub><doi>10.4153/S000843951800005X</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-4395
ispartof Canadian mathematical bulletin, 2019-09, Vol.62 (3), p.681-699
issn 0008-4395
1496-4287
language eng
recordid cdi_proquest_journals_2397889469
source Cambridge Journals
subjects Calculus of variations
Combinatorial analysis
Derivatives
Equivalence
Smoothness
Sobolev space
title Pointwise Characterizations of Even Order Sobolev Spaces via Derivatives of Ball Averages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pointwise%20Characterizations%20of%20Even%20Order%20Sobolev%20Spaces%20via%20Derivatives%20of%20Ball%20Averages&rft.jtitle=Canadian%20mathematical%20bulletin&rft.au=Xie,%20Guangheng&rft.date=2019-09&rft.volume=62&rft.issue=3&rft.spage=681&rft.epage=699&rft.pages=681-699&rft.issn=0008-4395&rft.eissn=1496-4287&rft_id=info:doi/10.4153/S000843951800005X&rft_dat=%3Cproquest_cross%3E2397889469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397889469&rft_id=info:pmid/&rft_cupid=10_4153_S000843951800005X&rfr_iscdi=true