Pointwise Characterizations of Even Order Sobolev Spaces via Derivatives of Ball Averages
Let $\ell \in \mathbb{N}$ and $p\in (1,\infty ]$ . In this article, the authors establish several equivalent characterizations of Sobolev spaces $W^{2\ell +2,p}(\mathbb{R}^{n})$ in terms of derivatives of ball averages. The novelty in the results of this article is that these equivalent characteriza...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2019-09, Vol.62 (3), p.681-699 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 699 |
---|---|
container_issue | 3 |
container_start_page | 681 |
container_title | Canadian mathematical bulletin |
container_volume | 62 |
creator | Xie, Guangheng Yang, Dachun Yuan, Wen |
description | Let
$\ell \in \mathbb{N}$
and
$p\in (1,\infty ]$
. In this article, the authors establish several equivalent characterizations of Sobolev spaces
$W^{2\ell +2,p}(\mathbb{R}^{n})$
in terms of derivatives of ball averages. The novelty in the results of this article is that these equivalent characterizations reveal some new connections between the smoothness indices of Sobolev spaces and the derivatives on the radius of ball averages and also that, to obtain the corresponding results for higher order Sobolev spaces, the authors first establish the combinatorial equality: for any
$\ell \in \mathbb{N}$
and
$k\in \{0,\ldots ,\ell -1\}$
,
$\sum _{j=0}^{2\ell }(-1)^{j}\binom{2\ell }{j}|\ell -j|^{2k}=0$
. |
doi_str_mv | 10.4153/S000843951800005X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2397889469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_S000843951800005X</cupid><sourcerecordid>2397889469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-bb4d9f48594c456ff01dd7444b3dd86427dc1df6f2c5250be427a5eb6142611c3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgyk8xjWWt9QKFCFXQ15HFTU6aTmkxH9Neb2oILcXUv93znXDgInVNyySjPruaEkJJlFadl3Ah_OUADyqo8YWlZHKLBVk62-jE6CWFJCC14wQfo9dHZtvuwAfD4TXihOvD2S3TWtQE7gyc9tHjmNXg8d9I10OP5WigIuLcC30S4j3APP_C1aBo86sGLBYRTdGREE-BsP4fo-XbyNL5PprO7h_FomqiMFl0iJdOVYSWvmGI8N4ZQrQvGmMy0LnOWFlpRbXKTKp5yIiFeBAeZU5bmlKpsiC52uWvv3jcQunrpNr6NL-s0q4qyrFheRYruKOVdCB5MvfZ2JfxnTUm9bbD-02D0ZHuPWElv9QJ-o_93fQPxUXLG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397889469</pqid></control><display><type>article</type><title>Pointwise Characterizations of Even Order Sobolev Spaces via Derivatives of Ball Averages</title><source>Cambridge Journals</source><creator>Xie, Guangheng ; Yang, Dachun ; Yuan, Wen</creator><creatorcontrib>Xie, Guangheng ; Yang, Dachun ; Yuan, Wen</creatorcontrib><description>Let
$\ell \in \mathbb{N}$
and
$p\in (1,\infty ]$
. In this article, the authors establish several equivalent characterizations of Sobolev spaces
$W^{2\ell +2,p}(\mathbb{R}^{n})$
in terms of derivatives of ball averages. The novelty in the results of this article is that these equivalent characterizations reveal some new connections between the smoothness indices of Sobolev spaces and the derivatives on the radius of ball averages and also that, to obtain the corresponding results for higher order Sobolev spaces, the authors first establish the combinatorial equality: for any
$\ell \in \mathbb{N}$
and
$k\in \{0,\ldots ,\ell -1\}$
,
$\sum _{j=0}^{2\ell }(-1)^{j}\binom{2\ell }{j}|\ell -j|^{2k}=0$
.</description><identifier>ISSN: 0008-4395</identifier><identifier>EISSN: 1496-4287</identifier><identifier>DOI: 10.4153/S000843951800005X</identifier><language>eng</language><publisher>Canada: Canadian Mathematical Society</publisher><subject>Calculus of variations ; Combinatorial analysis ; Derivatives ; Equivalence ; Smoothness ; Sobolev space</subject><ispartof>Canadian mathematical bulletin, 2019-09, Vol.62 (3), p.681-699</ispartof><rights>Canadian Mathematical Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-bb4d9f48594c456ff01dd7444b3dd86427dc1df6f2c5250be427a5eb6142611c3</citedby><cites>FETCH-LOGICAL-c317t-bb4d9f48594c456ff01dd7444b3dd86427dc1df6f2c5250be427a5eb6142611c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S000843951800005X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,27929,27930,55633</link.rule.ids></links><search><creatorcontrib>Xie, Guangheng</creatorcontrib><creatorcontrib>Yang, Dachun</creatorcontrib><creatorcontrib>Yuan, Wen</creatorcontrib><title>Pointwise Characterizations of Even Order Sobolev Spaces via Derivatives of Ball Averages</title><title>Canadian mathematical bulletin</title><addtitle>Can. Math. Bull</addtitle><description>Let
$\ell \in \mathbb{N}$
and
$p\in (1,\infty ]$
. In this article, the authors establish several equivalent characterizations of Sobolev spaces
$W^{2\ell +2,p}(\mathbb{R}^{n})$
in terms of derivatives of ball averages. The novelty in the results of this article is that these equivalent characterizations reveal some new connections between the smoothness indices of Sobolev spaces and the derivatives on the radius of ball averages and also that, to obtain the corresponding results for higher order Sobolev spaces, the authors first establish the combinatorial equality: for any
$\ell \in \mathbb{N}$
and
$k\in \{0,\ldots ,\ell -1\}$
,
$\sum _{j=0}^{2\ell }(-1)^{j}\binom{2\ell }{j}|\ell -j|^{2k}=0$
.</description><subject>Calculus of variations</subject><subject>Combinatorial analysis</subject><subject>Derivatives</subject><subject>Equivalence</subject><subject>Smoothness</subject><subject>Sobolev space</subject><issn>0008-4395</issn><issn>1496-4287</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgyk8xjWWt9QKFCFXQ15HFTU6aTmkxH9Neb2oILcXUv93znXDgInVNyySjPruaEkJJlFadl3Ah_OUADyqo8YWlZHKLBVk62-jE6CWFJCC14wQfo9dHZtvuwAfD4TXihOvD2S3TWtQE7gyc9tHjmNXg8d9I10OP5WigIuLcC30S4j3APP_C1aBo86sGLBYRTdGREE-BsP4fo-XbyNL5PprO7h_FomqiMFl0iJdOVYSWvmGI8N4ZQrQvGmMy0LnOWFlpRbXKTKp5yIiFeBAeZU5bmlKpsiC52uWvv3jcQunrpNr6NL-s0q4qyrFheRYruKOVdCB5MvfZ2JfxnTUm9bbD-02D0ZHuPWElv9QJ-o_93fQPxUXLG</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Xie, Guangheng</creator><creator>Yang, Dachun</creator><creator>Yuan, Wen</creator><general>Canadian Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201909</creationdate><title>Pointwise Characterizations of Even Order Sobolev Spaces via Derivatives of Ball Averages</title><author>Xie, Guangheng ; Yang, Dachun ; Yuan, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-bb4d9f48594c456ff01dd7444b3dd86427dc1df6f2c5250be427a5eb6142611c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Calculus of variations</topic><topic>Combinatorial analysis</topic><topic>Derivatives</topic><topic>Equivalence</topic><topic>Smoothness</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Guangheng</creatorcontrib><creatorcontrib>Yang, Dachun</creatorcontrib><creatorcontrib>Yuan, Wen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business & Current Affairs Database</collection><collection>Canadian Business & Current Affairs Database (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Canadian mathematical bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Guangheng</au><au>Yang, Dachun</au><au>Yuan, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pointwise Characterizations of Even Order Sobolev Spaces via Derivatives of Ball Averages</atitle><jtitle>Canadian mathematical bulletin</jtitle><addtitle>Can. Math. Bull</addtitle><date>2019-09</date><risdate>2019</risdate><volume>62</volume><issue>3</issue><spage>681</spage><epage>699</epage><pages>681-699</pages><issn>0008-4395</issn><eissn>1496-4287</eissn><abstract>Let
$\ell \in \mathbb{N}$
and
$p\in (1,\infty ]$
. In this article, the authors establish several equivalent characterizations of Sobolev spaces
$W^{2\ell +2,p}(\mathbb{R}^{n})$
in terms of derivatives of ball averages. The novelty in the results of this article is that these equivalent characterizations reveal some new connections between the smoothness indices of Sobolev spaces and the derivatives on the radius of ball averages and also that, to obtain the corresponding results for higher order Sobolev spaces, the authors first establish the combinatorial equality: for any
$\ell \in \mathbb{N}$
and
$k\in \{0,\ldots ,\ell -1\}$
,
$\sum _{j=0}^{2\ell }(-1)^{j}\binom{2\ell }{j}|\ell -j|^{2k}=0$
.</abstract><cop>Canada</cop><pub>Canadian Mathematical Society</pub><doi>10.4153/S000843951800005X</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-4395 |
ispartof | Canadian mathematical bulletin, 2019-09, Vol.62 (3), p.681-699 |
issn | 0008-4395 1496-4287 |
language | eng |
recordid | cdi_proquest_journals_2397889469 |
source | Cambridge Journals |
subjects | Calculus of variations Combinatorial analysis Derivatives Equivalence Smoothness Sobolev space |
title | Pointwise Characterizations of Even Order Sobolev Spaces via Derivatives of Ball Averages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pointwise%20Characterizations%20of%20Even%20Order%20Sobolev%20Spaces%20via%20Derivatives%20of%20Ball%20Averages&rft.jtitle=Canadian%20mathematical%20bulletin&rft.au=Xie,%20Guangheng&rft.date=2019-09&rft.volume=62&rft.issue=3&rft.spage=681&rft.epage=699&rft.pages=681-699&rft.issn=0008-4395&rft.eissn=1496-4287&rft_id=info:doi/10.4153/S000843951800005X&rft_dat=%3Cproquest_cross%3E2397889469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397889469&rft_id=info:pmid/&rft_cupid=10_4153_S000843951800005X&rfr_iscdi=true |