Optimizing Freeway Merge Operations under Conventional and Automated Vehicle Traffic
AbstractThis paper presents an optimization algorithm for freeway operations at merge zones that maximizes the average speed of the segment in the presence of connected and automated vehicles (CAVs) and human-operated (i.e., conventional) vehicles. This research assumes that CAVs have the capability...
Gespeichert in:
Veröffentlicht in: | Journal of transportation engineering, Part A Part A, 2020-07, Vol.146 (7) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Journal of transportation engineering, Part A |
container_volume | 146 |
creator | Omidvar, Aschkan Elefteriadou, Lily Pourmehrab, Mahmoud Letter, Clark |
description | AbstractThis paper presents an optimization algorithm for freeway operations at merge zones that maximizes the average speed of the segment in the presence of connected and automated vehicles (CAVs) and human-operated (i.e., conventional) vehicles. This research assumes that CAVs have the capability to communicate with each other and with the infrastructure and to execute the recommended trajectories. The proposed system receives arrival information as input and generates optimal trajectories for CAVs while predicting the behavior of conventional vehicles and accounting for deviation from expected behavior. The necessary algorithms are developed to simulate and carry out the merging operations on a two-lane freeway (one mainline and one ramp lane) and tested under a variety of scenarios considering demand level, demand splits, and CAV penetration rate. Results suggest that the proposed algorithm can efficiently manage the traffic at freeway merge zones and reduce the average total travel time (or increase average speed). The results indicate that a minimum of 25% CAV penetration rate is required to observe improvements in operational conditions. |
doi_str_mv | 10.1061/JTEPBS.0000369 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2397593535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397593535</sourcerecordid><originalsourceid>FETCH-LOGICAL-a331t-49e26c6c498d738adc6a23c71185569aaaad12c25addcbf8cc851196f48a5f9a3</originalsourceid><addsrcrecordid>eNp1UMFKw0AUXETBUnv1vOBRUrPZbLJ7rKWtSqWC0Wt47r7ULW0SdxOlfr0pqXhy3uE9HjPDMIRcsnDMwoTdPGSzp9vncdiBJ-qEDKI45UEkFT_9vVWYnpOR95uOw1LJRaoGJFvVjd3Zb1uu6dwhfsGePqJbI13V6KCxVelpWxp0dFqVn1gePrClUBo6aZtqBw0a-orvVm-RZg6KwuoLclbA1uPouIfkZT7LpnfBcrW4n06WAXDOmiBWGCU60bGSJuUSjE4g4jplTAqRKOhgWKQjAcbot0JqLQVjKiliCaJQwIfkqvetXfXRom_yTdW6Lp7PI65SobjoZkjGPUu7ynuHRV47uwO3z1mYH8rL-_LyY3md4LoXgNf4Z_kP-we19G_f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397593535</pqid></control><display><type>article</type><title>Optimizing Freeway Merge Operations under Conventional and Automated Vehicle Traffic</title><source>ASCE All titles</source><creator>Omidvar, Aschkan ; Elefteriadou, Lily ; Pourmehrab, Mahmoud ; Letter, Clark</creator><creatorcontrib>Omidvar, Aschkan ; Elefteriadou, Lily ; Pourmehrab, Mahmoud ; Letter, Clark</creatorcontrib><description>AbstractThis paper presents an optimization algorithm for freeway operations at merge zones that maximizes the average speed of the segment in the presence of connected and automated vehicles (CAVs) and human-operated (i.e., conventional) vehicles. This research assumes that CAVs have the capability to communicate with each other and with the infrastructure and to execute the recommended trajectories. The proposed system receives arrival information as input and generates optimal trajectories for CAVs while predicting the behavior of conventional vehicles and accounting for deviation from expected behavior. The necessary algorithms are developed to simulate and carry out the merging operations on a two-lane freeway (one mainline and one ramp lane) and tested under a variety of scenarios considering demand level, demand splits, and CAV penetration rate. Results suggest that the proposed algorithm can efficiently manage the traffic at freeway merge zones and reduce the average total travel time (or increase average speed). The results indicate that a minimum of 25% CAV penetration rate is required to observe improvements in operational conditions.</description><identifier>ISSN: 2473-2907</identifier><identifier>EISSN: 2473-2893</identifier><identifier>DOI: 10.1061/JTEPBS.0000369</identifier><language>eng</language><publisher>Reston: American Society of Civil Engineers</publisher><subject>Algorithms ; Automation ; Computer simulation ; Highways ; Optimization ; Penetration ; Technical Papers ; Traffic management ; Travel time ; Vehicles</subject><ispartof>Journal of transportation engineering, Part A, 2020-07, Vol.146 (7)</ispartof><rights>2020 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a331t-49e26c6c498d738adc6a23c71185569aaaad12c25addcbf8cc851196f48a5f9a3</citedby><cites>FETCH-LOGICAL-a331t-49e26c6c498d738adc6a23c71185569aaaad12c25addcbf8cc851196f48a5f9a3</cites><orcidid>0000-0002-6345-0215 ; 0000-0002-6533-6686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/JTEPBS.0000369$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/JTEPBS.0000369$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76195,76203</link.rule.ids></links><search><creatorcontrib>Omidvar, Aschkan</creatorcontrib><creatorcontrib>Elefteriadou, Lily</creatorcontrib><creatorcontrib>Pourmehrab, Mahmoud</creatorcontrib><creatorcontrib>Letter, Clark</creatorcontrib><title>Optimizing Freeway Merge Operations under Conventional and Automated Vehicle Traffic</title><title>Journal of transportation engineering, Part A</title><description>AbstractThis paper presents an optimization algorithm for freeway operations at merge zones that maximizes the average speed of the segment in the presence of connected and automated vehicles (CAVs) and human-operated (i.e., conventional) vehicles. This research assumes that CAVs have the capability to communicate with each other and with the infrastructure and to execute the recommended trajectories. The proposed system receives arrival information as input and generates optimal trajectories for CAVs while predicting the behavior of conventional vehicles and accounting for deviation from expected behavior. The necessary algorithms are developed to simulate and carry out the merging operations on a two-lane freeway (one mainline and one ramp lane) and tested under a variety of scenarios considering demand level, demand splits, and CAV penetration rate. Results suggest that the proposed algorithm can efficiently manage the traffic at freeway merge zones and reduce the average total travel time (or increase average speed). The results indicate that a minimum of 25% CAV penetration rate is required to observe improvements in operational conditions.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Computer simulation</subject><subject>Highways</subject><subject>Optimization</subject><subject>Penetration</subject><subject>Technical Papers</subject><subject>Traffic management</subject><subject>Travel time</subject><subject>Vehicles</subject><issn>2473-2907</issn><issn>2473-2893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKw0AUXETBUnv1vOBRUrPZbLJ7rKWtSqWC0Wt47r7ULW0SdxOlfr0pqXhy3uE9HjPDMIRcsnDMwoTdPGSzp9vncdiBJ-qEDKI45UEkFT_9vVWYnpOR95uOw1LJRaoGJFvVjd3Zb1uu6dwhfsGePqJbI13V6KCxVelpWxp0dFqVn1gePrClUBo6aZtqBw0a-orvVm-RZg6KwuoLclbA1uPouIfkZT7LpnfBcrW4n06WAXDOmiBWGCU60bGSJuUSjE4g4jplTAqRKOhgWKQjAcbot0JqLQVjKiliCaJQwIfkqvetXfXRom_yTdW6Lp7PI65SobjoZkjGPUu7ynuHRV47uwO3z1mYH8rL-_LyY3md4LoXgNf4Z_kP-we19G_f</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Omidvar, Aschkan</creator><creator>Elefteriadou, Lily</creator><creator>Pourmehrab, Mahmoud</creator><creator>Letter, Clark</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-6345-0215</orcidid><orcidid>https://orcid.org/0000-0002-6533-6686</orcidid></search><sort><creationdate>20200701</creationdate><title>Optimizing Freeway Merge Operations under Conventional and Automated Vehicle Traffic</title><author>Omidvar, Aschkan ; Elefteriadou, Lily ; Pourmehrab, Mahmoud ; Letter, Clark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a331t-49e26c6c498d738adc6a23c71185569aaaad12c25addcbf8cc851196f48a5f9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Computer simulation</topic><topic>Highways</topic><topic>Optimization</topic><topic>Penetration</topic><topic>Technical Papers</topic><topic>Traffic management</topic><topic>Travel time</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omidvar, Aschkan</creatorcontrib><creatorcontrib>Elefteriadou, Lily</creatorcontrib><creatorcontrib>Pourmehrab, Mahmoud</creatorcontrib><creatorcontrib>Letter, Clark</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of transportation engineering, Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omidvar, Aschkan</au><au>Elefteriadou, Lily</au><au>Pourmehrab, Mahmoud</au><au>Letter, Clark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Freeway Merge Operations under Conventional and Automated Vehicle Traffic</atitle><jtitle>Journal of transportation engineering, Part A</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>146</volume><issue>7</issue><issn>2473-2907</issn><eissn>2473-2893</eissn><abstract>AbstractThis paper presents an optimization algorithm for freeway operations at merge zones that maximizes the average speed of the segment in the presence of connected and automated vehicles (CAVs) and human-operated (i.e., conventional) vehicles. This research assumes that CAVs have the capability to communicate with each other and with the infrastructure and to execute the recommended trajectories. The proposed system receives arrival information as input and generates optimal trajectories for CAVs while predicting the behavior of conventional vehicles and accounting for deviation from expected behavior. The necessary algorithms are developed to simulate and carry out the merging operations on a two-lane freeway (one mainline and one ramp lane) and tested under a variety of scenarios considering demand level, demand splits, and CAV penetration rate. Results suggest that the proposed algorithm can efficiently manage the traffic at freeway merge zones and reduce the average total travel time (or increase average speed). The results indicate that a minimum of 25% CAV penetration rate is required to observe improvements in operational conditions.</abstract><cop>Reston</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/JTEPBS.0000369</doi><orcidid>https://orcid.org/0000-0002-6345-0215</orcidid><orcidid>https://orcid.org/0000-0002-6533-6686</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2473-2907 |
ispartof | Journal of transportation engineering, Part A, 2020-07, Vol.146 (7) |
issn | 2473-2907 2473-2893 |
language | eng |
recordid | cdi_proquest_journals_2397593535 |
source | ASCE All titles |
subjects | Algorithms Automation Computer simulation Highways Optimization Penetration Technical Papers Traffic management Travel time Vehicles |
title | Optimizing Freeway Merge Operations under Conventional and Automated Vehicle Traffic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Freeway%20Merge%20Operations%20under%20Conventional%20and%20Automated%20Vehicle%20Traffic&rft.jtitle=Journal%20of%20transportation%20engineering,%20Part%20A&rft.au=Omidvar,%20Aschkan&rft.date=2020-07-01&rft.volume=146&rft.issue=7&rft.issn=2473-2907&rft.eissn=2473-2893&rft_id=info:doi/10.1061/JTEPBS.0000369&rft_dat=%3Cproquest_cross%3E2397593535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397593535&rft_id=info:pmid/&rfr_iscdi=true |