Optimizing Freeway Merge Operations under Conventional and Automated Vehicle Traffic

AbstractThis paper presents an optimization algorithm for freeway operations at merge zones that maximizes the average speed of the segment in the presence of connected and automated vehicles (CAVs) and human-operated (i.e., conventional) vehicles. This research assumes that CAVs have the capability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of transportation engineering, Part A Part A, 2020-07, Vol.146 (7)
Hauptverfasser: Omidvar, Aschkan, Elefteriadou, Lily, Pourmehrab, Mahmoud, Letter, Clark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of transportation engineering, Part A
container_volume 146
creator Omidvar, Aschkan
Elefteriadou, Lily
Pourmehrab, Mahmoud
Letter, Clark
description AbstractThis paper presents an optimization algorithm for freeway operations at merge zones that maximizes the average speed of the segment in the presence of connected and automated vehicles (CAVs) and human-operated (i.e., conventional) vehicles. This research assumes that CAVs have the capability to communicate with each other and with the infrastructure and to execute the recommended trajectories. The proposed system receives arrival information as input and generates optimal trajectories for CAVs while predicting the behavior of conventional vehicles and accounting for deviation from expected behavior. The necessary algorithms are developed to simulate and carry out the merging operations on a two-lane freeway (one mainline and one ramp lane) and tested under a variety of scenarios considering demand level, demand splits, and CAV penetration rate. Results suggest that the proposed algorithm can efficiently manage the traffic at freeway merge zones and reduce the average total travel time (or increase average speed). The results indicate that a minimum of 25% CAV penetration rate is required to observe improvements in operational conditions.
doi_str_mv 10.1061/JTEPBS.0000369
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2397593535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397593535</sourcerecordid><originalsourceid>FETCH-LOGICAL-a331t-49e26c6c498d738adc6a23c71185569aaaad12c25addcbf8cc851196f48a5f9a3</originalsourceid><addsrcrecordid>eNp1UMFKw0AUXETBUnv1vOBRUrPZbLJ7rKWtSqWC0Wt47r7ULW0SdxOlfr0pqXhy3uE9HjPDMIRcsnDMwoTdPGSzp9vncdiBJ-qEDKI45UEkFT_9vVWYnpOR95uOw1LJRaoGJFvVjd3Zb1uu6dwhfsGePqJbI13V6KCxVelpWxp0dFqVn1gePrClUBo6aZtqBw0a-orvVm-RZg6KwuoLclbA1uPouIfkZT7LpnfBcrW4n06WAXDOmiBWGCU60bGSJuUSjE4g4jplTAqRKOhgWKQjAcbot0JqLQVjKiliCaJQwIfkqvetXfXRom_yTdW6Lp7PI65SobjoZkjGPUu7ynuHRV47uwO3z1mYH8rL-_LyY3md4LoXgNf4Z_kP-we19G_f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397593535</pqid></control><display><type>article</type><title>Optimizing Freeway Merge Operations under Conventional and Automated Vehicle Traffic</title><source>ASCE All titles</source><creator>Omidvar, Aschkan ; Elefteriadou, Lily ; Pourmehrab, Mahmoud ; Letter, Clark</creator><creatorcontrib>Omidvar, Aschkan ; Elefteriadou, Lily ; Pourmehrab, Mahmoud ; Letter, Clark</creatorcontrib><description>AbstractThis paper presents an optimization algorithm for freeway operations at merge zones that maximizes the average speed of the segment in the presence of connected and automated vehicles (CAVs) and human-operated (i.e., conventional) vehicles. This research assumes that CAVs have the capability to communicate with each other and with the infrastructure and to execute the recommended trajectories. The proposed system receives arrival information as input and generates optimal trajectories for CAVs while predicting the behavior of conventional vehicles and accounting for deviation from expected behavior. The necessary algorithms are developed to simulate and carry out the merging operations on a two-lane freeway (one mainline and one ramp lane) and tested under a variety of scenarios considering demand level, demand splits, and CAV penetration rate. Results suggest that the proposed algorithm can efficiently manage the traffic at freeway merge zones and reduce the average total travel time (or increase average speed). The results indicate that a minimum of 25% CAV penetration rate is required to observe improvements in operational conditions.</description><identifier>ISSN: 2473-2907</identifier><identifier>EISSN: 2473-2893</identifier><identifier>DOI: 10.1061/JTEPBS.0000369</identifier><language>eng</language><publisher>Reston: American Society of Civil Engineers</publisher><subject>Algorithms ; Automation ; Computer simulation ; Highways ; Optimization ; Penetration ; Technical Papers ; Traffic management ; Travel time ; Vehicles</subject><ispartof>Journal of transportation engineering, Part A, 2020-07, Vol.146 (7)</ispartof><rights>2020 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a331t-49e26c6c498d738adc6a23c71185569aaaad12c25addcbf8cc851196f48a5f9a3</citedby><cites>FETCH-LOGICAL-a331t-49e26c6c498d738adc6a23c71185569aaaad12c25addcbf8cc851196f48a5f9a3</cites><orcidid>0000-0002-6345-0215 ; 0000-0002-6533-6686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/JTEPBS.0000369$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/JTEPBS.0000369$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76195,76203</link.rule.ids></links><search><creatorcontrib>Omidvar, Aschkan</creatorcontrib><creatorcontrib>Elefteriadou, Lily</creatorcontrib><creatorcontrib>Pourmehrab, Mahmoud</creatorcontrib><creatorcontrib>Letter, Clark</creatorcontrib><title>Optimizing Freeway Merge Operations under Conventional and Automated Vehicle Traffic</title><title>Journal of transportation engineering, Part A</title><description>AbstractThis paper presents an optimization algorithm for freeway operations at merge zones that maximizes the average speed of the segment in the presence of connected and automated vehicles (CAVs) and human-operated (i.e., conventional) vehicles. This research assumes that CAVs have the capability to communicate with each other and with the infrastructure and to execute the recommended trajectories. The proposed system receives arrival information as input and generates optimal trajectories for CAVs while predicting the behavior of conventional vehicles and accounting for deviation from expected behavior. The necessary algorithms are developed to simulate and carry out the merging operations on a two-lane freeway (one mainline and one ramp lane) and tested under a variety of scenarios considering demand level, demand splits, and CAV penetration rate. Results suggest that the proposed algorithm can efficiently manage the traffic at freeway merge zones and reduce the average total travel time (or increase average speed). The results indicate that a minimum of 25% CAV penetration rate is required to observe improvements in operational conditions.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Computer simulation</subject><subject>Highways</subject><subject>Optimization</subject><subject>Penetration</subject><subject>Technical Papers</subject><subject>Traffic management</subject><subject>Travel time</subject><subject>Vehicles</subject><issn>2473-2907</issn><issn>2473-2893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKw0AUXETBUnv1vOBRUrPZbLJ7rKWtSqWC0Wt47r7ULW0SdxOlfr0pqXhy3uE9HjPDMIRcsnDMwoTdPGSzp9vncdiBJ-qEDKI45UEkFT_9vVWYnpOR95uOw1LJRaoGJFvVjd3Zb1uu6dwhfsGePqJbI13V6KCxVelpWxp0dFqVn1gePrClUBo6aZtqBw0a-orvVm-RZg6KwuoLclbA1uPouIfkZT7LpnfBcrW4n06WAXDOmiBWGCU60bGSJuUSjE4g4jplTAqRKOhgWKQjAcbot0JqLQVjKiliCaJQwIfkqvetXfXRom_yTdW6Lp7PI65SobjoZkjGPUu7ynuHRV47uwO3z1mYH8rL-_LyY3md4LoXgNf4Z_kP-we19G_f</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Omidvar, Aschkan</creator><creator>Elefteriadou, Lily</creator><creator>Pourmehrab, Mahmoud</creator><creator>Letter, Clark</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-6345-0215</orcidid><orcidid>https://orcid.org/0000-0002-6533-6686</orcidid></search><sort><creationdate>20200701</creationdate><title>Optimizing Freeway Merge Operations under Conventional and Automated Vehicle Traffic</title><author>Omidvar, Aschkan ; Elefteriadou, Lily ; Pourmehrab, Mahmoud ; Letter, Clark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a331t-49e26c6c498d738adc6a23c71185569aaaad12c25addcbf8cc851196f48a5f9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Computer simulation</topic><topic>Highways</topic><topic>Optimization</topic><topic>Penetration</topic><topic>Technical Papers</topic><topic>Traffic management</topic><topic>Travel time</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omidvar, Aschkan</creatorcontrib><creatorcontrib>Elefteriadou, Lily</creatorcontrib><creatorcontrib>Pourmehrab, Mahmoud</creatorcontrib><creatorcontrib>Letter, Clark</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of transportation engineering, Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omidvar, Aschkan</au><au>Elefteriadou, Lily</au><au>Pourmehrab, Mahmoud</au><au>Letter, Clark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Freeway Merge Operations under Conventional and Automated Vehicle Traffic</atitle><jtitle>Journal of transportation engineering, Part A</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>146</volume><issue>7</issue><issn>2473-2907</issn><eissn>2473-2893</eissn><abstract>AbstractThis paper presents an optimization algorithm for freeway operations at merge zones that maximizes the average speed of the segment in the presence of connected and automated vehicles (CAVs) and human-operated (i.e., conventional) vehicles. This research assumes that CAVs have the capability to communicate with each other and with the infrastructure and to execute the recommended trajectories. The proposed system receives arrival information as input and generates optimal trajectories for CAVs while predicting the behavior of conventional vehicles and accounting for deviation from expected behavior. The necessary algorithms are developed to simulate and carry out the merging operations on a two-lane freeway (one mainline and one ramp lane) and tested under a variety of scenarios considering demand level, demand splits, and CAV penetration rate. Results suggest that the proposed algorithm can efficiently manage the traffic at freeway merge zones and reduce the average total travel time (or increase average speed). The results indicate that a minimum of 25% CAV penetration rate is required to observe improvements in operational conditions.</abstract><cop>Reston</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/JTEPBS.0000369</doi><orcidid>https://orcid.org/0000-0002-6345-0215</orcidid><orcidid>https://orcid.org/0000-0002-6533-6686</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2473-2907
ispartof Journal of transportation engineering, Part A, 2020-07, Vol.146 (7)
issn 2473-2907
2473-2893
language eng
recordid cdi_proquest_journals_2397593535
source ASCE All titles
subjects Algorithms
Automation
Computer simulation
Highways
Optimization
Penetration
Technical Papers
Traffic management
Travel time
Vehicles
title Optimizing Freeway Merge Operations under Conventional and Automated Vehicle Traffic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Freeway%20Merge%20Operations%20under%20Conventional%20and%20Automated%20Vehicle%20Traffic&rft.jtitle=Journal%20of%20transportation%20engineering,%20Part%20A&rft.au=Omidvar,%20Aschkan&rft.date=2020-07-01&rft.volume=146&rft.issue=7&rft.issn=2473-2907&rft.eissn=2473-2893&rft_id=info:doi/10.1061/JTEPBS.0000369&rft_dat=%3Cproquest_cross%3E2397593535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397593535&rft_id=info:pmid/&rfr_iscdi=true