Plasma‐assisted gas‐phase synthesis and in‐line coating of silicon nanoparticles

This study investigates the feasibility of plasma‐supported in‐line functionalization of silicon nanoparticles (NPs) in an atmospheric pressure gas‐phase reactor. The approach utilizes the synthesis of core silicon NPs and their subsequent coating downstream of the particle formation zone. In‐line c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma processes and polymers 2020-05, Vol.17 (5), p.n/a
Hauptverfasser: Dasgupta, Malini, Fortugno, Paolo, Wiggers, Hartmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Plasma processes and polymers
container_volume 17
creator Dasgupta, Malini
Fortugno, Paolo
Wiggers, Hartmut
description This study investigates the feasibility of plasma‐supported in‐line functionalization of silicon nanoparticles (NPs) in an atmospheric pressure gas‐phase reactor. The approach utilizes the synthesis of core silicon NPs and their subsequent coating downstream of the particle formation zone. In‐line coating is accomplished with a cylindrical coating nozzle to achieve homogenous mixing of coating precursor vapors with in‐coming NPs. Multiple siloxanes were tested for their coating suitability and their ability towards coating homogeneity. It was found that tetraethyl orthosilicate is favored for thin layers consisting of almost pure silica while hexamethyldisiloxane and octamethylcyclotetrasiloxane (OMCTS) coatings contained reasonable amounts of hydrocarbons. Moreover, OMCTS showed a pronounced tendency towards homogeneous nucleation, thus leading to the additional formation of silica NPs due to homogeneous nucleation. Gas‐phase synthesis followed by plasma‐assisted in‐line functionalization of silicon nanoparticles is carried out in a plasma reactor under atmospheric pressure. Various coating precursors are used, including tetraethyl orthosilicate, hexamethyldisiloxane, and octamethylcyclotetrasiloxane to obtain distinct core‐shell structures. The plasma generates activated species, which help in the formation of an amorphous, homogeneous SiO2 shell around the crystalline Silicon core in the plasma afterglow. Depending on precursor, composition and concentration, homogeneous nucleation is observed besides homogeneous particle coating via heterogeneous nucleation.
doi_str_mv 10.1002/ppap.201900245
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2397512948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397512948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3945-daf77b395d5222353db5c54557a5fbf07677d8c669bde8f675b0160d9ab4770c3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqVw5WyJc4vtxHF8rCr-pErkAFytje20rlInZFOh3ngEnpEnIVVROXLaHc3MrvQRcs3ZlDMmbtsW2qlgXA8ilSdkxDMuJnme6dPjLtk5uUBcM5YwmbMReStqwA18f34BYsDeO7oEHGS7AvQUd7Ff-cGgEB0NcTDqED21DfQhLmlTUQx1sE2kEWLTQtcHW3u8JGcV1OivfueYvN7fvcwfJ4vnh6f5bDGxiU7lxEGlVJlo6aQQIpGJK6WVqZQKZFVWTGVKudxmmS6dz6tMyZLxjDkNZaoUs8mY3Bzutl3zvvXYm3Wz7eLw0ohEK8mFTvMhNT2kbNcgdr4ybRc20O0MZ2bPzuzZmSO7oaAPhY9Q-90_aVMUs-Kv-wPghna1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397512948</pqid></control><display><type>article</type><title>Plasma‐assisted gas‐phase synthesis and in‐line coating of silicon nanoparticles</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dasgupta, Malini ; Fortugno, Paolo ; Wiggers, Hartmut</creator><creatorcontrib>Dasgupta, Malini ; Fortugno, Paolo ; Wiggers, Hartmut</creatorcontrib><description>This study investigates the feasibility of plasma‐supported in‐line functionalization of silicon nanoparticles (NPs) in an atmospheric pressure gas‐phase reactor. The approach utilizes the synthesis of core silicon NPs and their subsequent coating downstream of the particle formation zone. In‐line coating is accomplished with a cylindrical coating nozzle to achieve homogenous mixing of coating precursor vapors with in‐coming NPs. Multiple siloxanes were tested for their coating suitability and their ability towards coating homogeneity. It was found that tetraethyl orthosilicate is favored for thin layers consisting of almost pure silica while hexamethyldisiloxane and octamethylcyclotetrasiloxane (OMCTS) coatings contained reasonable amounts of hydrocarbons. Moreover, OMCTS showed a pronounced tendency towards homogeneous nucleation, thus leading to the additional formation of silica NPs due to homogeneous nucleation. Gas‐phase synthesis followed by plasma‐assisted in‐line functionalization of silicon nanoparticles is carried out in a plasma reactor under atmospheric pressure. Various coating precursors are used, including tetraethyl orthosilicate, hexamethyldisiloxane, and octamethylcyclotetrasiloxane to obtain distinct core‐shell structures. The plasma generates activated species, which help in the formation of an amorphous, homogeneous SiO2 shell around the crystalline Silicon core in the plasma afterglow. Depending on precursor, composition and concentration, homogeneous nucleation is observed besides homogeneous particle coating via heterogeneous nucleation.</description><identifier>ISSN: 1612-8850</identifier><identifier>EISSN: 1612-8869</identifier><identifier>DOI: 10.1002/ppap.201900245</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>CVD ; Feasibility studies ; Hexamethyldisiloxane ; HMDSO ; Homogeneity ; Ice ; Nanoparticles ; Nozzles ; Nucleation ; Octamethylcyclotetrasiloxane ; OMCTS ; particle coating ; plasma synthesis ; Silicon dioxide ; silicon nanoparticles ; Siloxanes ; Synthesis ; TEOS ; Tetraethyl orthosilicate ; Thin films</subject><ispartof>Plasma processes and polymers, 2020-05, Vol.17 (5), p.n/a</ispartof><rights>2020 The Authors. published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3945-daf77b395d5222353db5c54557a5fbf07677d8c669bde8f675b0160d9ab4770c3</citedby><cites>FETCH-LOGICAL-c3945-daf77b395d5222353db5c54557a5fbf07677d8c669bde8f675b0160d9ab4770c3</cites><orcidid>0000-0001-8487-9937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppap.201900245$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppap.201900245$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Dasgupta, Malini</creatorcontrib><creatorcontrib>Fortugno, Paolo</creatorcontrib><creatorcontrib>Wiggers, Hartmut</creatorcontrib><title>Plasma‐assisted gas‐phase synthesis and in‐line coating of silicon nanoparticles</title><title>Plasma processes and polymers</title><description>This study investigates the feasibility of plasma‐supported in‐line functionalization of silicon nanoparticles (NPs) in an atmospheric pressure gas‐phase reactor. The approach utilizes the synthesis of core silicon NPs and their subsequent coating downstream of the particle formation zone. In‐line coating is accomplished with a cylindrical coating nozzle to achieve homogenous mixing of coating precursor vapors with in‐coming NPs. Multiple siloxanes were tested for their coating suitability and their ability towards coating homogeneity. It was found that tetraethyl orthosilicate is favored for thin layers consisting of almost pure silica while hexamethyldisiloxane and octamethylcyclotetrasiloxane (OMCTS) coatings contained reasonable amounts of hydrocarbons. Moreover, OMCTS showed a pronounced tendency towards homogeneous nucleation, thus leading to the additional formation of silica NPs due to homogeneous nucleation. Gas‐phase synthesis followed by plasma‐assisted in‐line functionalization of silicon nanoparticles is carried out in a plasma reactor under atmospheric pressure. Various coating precursors are used, including tetraethyl orthosilicate, hexamethyldisiloxane, and octamethylcyclotetrasiloxane to obtain distinct core‐shell structures. The plasma generates activated species, which help in the formation of an amorphous, homogeneous SiO2 shell around the crystalline Silicon core in the plasma afterglow. Depending on precursor, composition and concentration, homogeneous nucleation is observed besides homogeneous particle coating via heterogeneous nucleation.</description><subject>CVD</subject><subject>Feasibility studies</subject><subject>Hexamethyldisiloxane</subject><subject>HMDSO</subject><subject>Homogeneity</subject><subject>Ice</subject><subject>Nanoparticles</subject><subject>Nozzles</subject><subject>Nucleation</subject><subject>Octamethylcyclotetrasiloxane</subject><subject>OMCTS</subject><subject>particle coating</subject><subject>plasma synthesis</subject><subject>Silicon dioxide</subject><subject>silicon nanoparticles</subject><subject>Siloxanes</subject><subject>Synthesis</subject><subject>TEOS</subject><subject>Tetraethyl orthosilicate</subject><subject>Thin films</subject><issn>1612-8850</issn><issn>1612-8869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1OwzAQhC0EEqVw5WyJc4vtxHF8rCr-pErkAFytje20rlInZFOh3ngEnpEnIVVROXLaHc3MrvQRcs3ZlDMmbtsW2qlgXA8ilSdkxDMuJnme6dPjLtk5uUBcM5YwmbMReStqwA18f34BYsDeO7oEHGS7AvQUd7Ff-cGgEB0NcTDqED21DfQhLmlTUQx1sE2kEWLTQtcHW3u8JGcV1OivfueYvN7fvcwfJ4vnh6f5bDGxiU7lxEGlVJlo6aQQIpGJK6WVqZQKZFVWTGVKudxmmS6dz6tMyZLxjDkNZaoUs8mY3Bzutl3zvvXYm3Wz7eLw0ohEK8mFTvMhNT2kbNcgdr4ybRc20O0MZ2bPzuzZmSO7oaAPhY9Q-90_aVMUs-Kv-wPghna1</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Dasgupta, Malini</creator><creator>Fortugno, Paolo</creator><creator>Wiggers, Hartmut</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-8487-9937</orcidid></search><sort><creationdate>202005</creationdate><title>Plasma‐assisted gas‐phase synthesis and in‐line coating of silicon nanoparticles</title><author>Dasgupta, Malini ; Fortugno, Paolo ; Wiggers, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3945-daf77b395d5222353db5c54557a5fbf07677d8c669bde8f675b0160d9ab4770c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CVD</topic><topic>Feasibility studies</topic><topic>Hexamethyldisiloxane</topic><topic>HMDSO</topic><topic>Homogeneity</topic><topic>Ice</topic><topic>Nanoparticles</topic><topic>Nozzles</topic><topic>Nucleation</topic><topic>Octamethylcyclotetrasiloxane</topic><topic>OMCTS</topic><topic>particle coating</topic><topic>plasma synthesis</topic><topic>Silicon dioxide</topic><topic>silicon nanoparticles</topic><topic>Siloxanes</topic><topic>Synthesis</topic><topic>TEOS</topic><topic>Tetraethyl orthosilicate</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dasgupta, Malini</creatorcontrib><creatorcontrib>Fortugno, Paolo</creatorcontrib><creatorcontrib>Wiggers, Hartmut</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Plasma processes and polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dasgupta, Malini</au><au>Fortugno, Paolo</au><au>Wiggers, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma‐assisted gas‐phase synthesis and in‐line coating of silicon nanoparticles</atitle><jtitle>Plasma processes and polymers</jtitle><date>2020-05</date><risdate>2020</risdate><volume>17</volume><issue>5</issue><epage>n/a</epage><issn>1612-8850</issn><eissn>1612-8869</eissn><abstract>This study investigates the feasibility of plasma‐supported in‐line functionalization of silicon nanoparticles (NPs) in an atmospheric pressure gas‐phase reactor. The approach utilizes the synthesis of core silicon NPs and their subsequent coating downstream of the particle formation zone. In‐line coating is accomplished with a cylindrical coating nozzle to achieve homogenous mixing of coating precursor vapors with in‐coming NPs. Multiple siloxanes were tested for their coating suitability and their ability towards coating homogeneity. It was found that tetraethyl orthosilicate is favored for thin layers consisting of almost pure silica while hexamethyldisiloxane and octamethylcyclotetrasiloxane (OMCTS) coatings contained reasonable amounts of hydrocarbons. Moreover, OMCTS showed a pronounced tendency towards homogeneous nucleation, thus leading to the additional formation of silica NPs due to homogeneous nucleation. Gas‐phase synthesis followed by plasma‐assisted in‐line functionalization of silicon nanoparticles is carried out in a plasma reactor under atmospheric pressure. Various coating precursors are used, including tetraethyl orthosilicate, hexamethyldisiloxane, and octamethylcyclotetrasiloxane to obtain distinct core‐shell structures. The plasma generates activated species, which help in the formation of an amorphous, homogeneous SiO2 shell around the crystalline Silicon core in the plasma afterglow. Depending on precursor, composition and concentration, homogeneous nucleation is observed besides homogeneous particle coating via heterogeneous nucleation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppap.201900245</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8487-9937</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1612-8850
ispartof Plasma processes and polymers, 2020-05, Vol.17 (5), p.n/a
issn 1612-8850
1612-8869
language eng
recordid cdi_proquest_journals_2397512948
source Wiley Online Library Journals Frontfile Complete
subjects CVD
Feasibility studies
Hexamethyldisiloxane
HMDSO
Homogeneity
Ice
Nanoparticles
Nozzles
Nucleation
Octamethylcyclotetrasiloxane
OMCTS
particle coating
plasma synthesis
Silicon dioxide
silicon nanoparticles
Siloxanes
Synthesis
TEOS
Tetraethyl orthosilicate
Thin films
title Plasma‐assisted gas‐phase synthesis and in‐line coating of silicon nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A18%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%E2%80%90assisted%20gas%E2%80%90phase%20synthesis%20and%20in%E2%80%90line%20coating%20of%20silicon%20nanoparticles&rft.jtitle=Plasma%20processes%20and%20polymers&rft.au=Dasgupta,%20Malini&rft.date=2020-05&rft.volume=17&rft.issue=5&rft.epage=n/a&rft.issn=1612-8850&rft.eissn=1612-8869&rft_id=info:doi/10.1002/ppap.201900245&rft_dat=%3Cproquest_cross%3E2397512948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397512948&rft_id=info:pmid/&rfr_iscdi=true