Automated detection of calcified plaque using higher‐order spectra cumulant technique in computer tomography angiography images
Cardiovascular disease continues to be the leading cause of death globally. Often, it stems from atherosclerosis, which can trigger substantial variations in the coronary arteries, possibly causing coronary artery disease (CAD). Coronary artery calcification is known to be a strong and independent f...
Gespeichert in:
Veröffentlicht in: | International journal of imaging systems and technology 2020-06, Vol.30 (2), p.285-297 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 297 |
---|---|
container_issue | 2 |
container_start_page | 285 |
container_title | International journal of imaging systems and technology |
container_volume | 30 |
creator | Acharya, U Rajendra Meiburger, Kristen M. Koh, Joel E. W. Ciaccio, Edward J. Vicnesh, Jahmunah Tan, Sock K. Wong, Jeannie H. D. Aman, Raja R. A. R. Ng, Kwan H. |
description | Cardiovascular disease continues to be the leading cause of death globally. Often, it stems from atherosclerosis, which can trigger substantial variations in the coronary arteries, possibly causing coronary artery disease (CAD). Coronary artery calcification is known to be a strong and independent forecaster of CAD. Hence, coronary computer tomography angiography (CTA) has become a fundamental noninvasive imaging tool to characterize coronary artery plaques. In this article, an automated algorithm is presented to uncover the presence of a calcified plaque, using 2060 CTA images acquired from 60 patients. Higher‐order spectra cumulants were extracted from each image, thereby providing 2448 descriptive features per image. The features were then reduced using numerous well‐established techniques, and ranked according to t value. Subsequently, the reduced features were input to several classifiers to achieve the best diagnostic accuracy with a minimum number of features. Optimal results were obtained using the support vector machine with a radial basis function, having 22 features obtained with the multiple factor analysis feature reduction algorithm. The accuracy, positive predictive value, sensitivity, and specificity obtained were 95.83%, 97.05%, 94.54%, and 97.13%, respectively. Based on these results, the technique could be useful to automatically and accurately identify calcified plaque evident in CTA images, and may therefore become an important tool to help reduce procedural costs and patient radiation dose. |
doi_str_mv | 10.1002/ima.22369 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2397511762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397511762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-82a6f28d735da3f005b5b5ea8fa2df67cba98bd86c1c90cf32365db7d0a427e23</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI4ufIOAKxedSdJp0ywH8WdgxI2uQ5qfNkPb1KRFZqdv4DP6JKaOLuVCbhK-c-_hAHCJ0QIjRJa2FQtC0pwdgRlGrEim4xjMUMFYwlYZPQVnIewQwjhD2Qx8rMfBtWLQCio9aDlY10FnoBSNtMbG774Rr6OGY7BdBWtb1dp_vX86r7SHoY8KL6Ac27ER3QDjhLqzE287KF3bj0PE4gZXedHXeyi6yv7do9dKh3NwYkQT9MVvn4OXu9vnm4dk-3S_uVlvE0kYZUlBRG5IoWiaKZEahLIylhaFEUSZnMpSsKJURS6xZEiaNIaQqZIqJFaEapLOwdVhbu9dNBgGvnOj7-JKTlJGM4xpPlHXB0p6F4LXhvc--vR7jhGfEubxxX8SjuzywL7ZRu__B_nmcX1QfAMbcoHF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397511762</pqid></control><display><type>article</type><title>Automated detection of calcified plaque using higher‐order spectra cumulant technique in computer tomography angiography images</title><source>Wiley Journals</source><creator>Acharya, U Rajendra ; Meiburger, Kristen M. ; Koh, Joel E. W. ; Ciaccio, Edward J. ; Vicnesh, Jahmunah ; Tan, Sock K. ; Wong, Jeannie H. D. ; Aman, Raja R. A. R. ; Ng, Kwan H.</creator><creatorcontrib>Acharya, U Rajendra ; Meiburger, Kristen M. ; Koh, Joel E. W. ; Ciaccio, Edward J. ; Vicnesh, Jahmunah ; Tan, Sock K. ; Wong, Jeannie H. D. ; Aman, Raja R. A. R. ; Ng, Kwan H.</creatorcontrib><description>Cardiovascular disease continues to be the leading cause of death globally. Often, it stems from atherosclerosis, which can trigger substantial variations in the coronary arteries, possibly causing coronary artery disease (CAD). Coronary artery calcification is known to be a strong and independent forecaster of CAD. Hence, coronary computer tomography angiography (CTA) has become a fundamental noninvasive imaging tool to characterize coronary artery plaques. In this article, an automated algorithm is presented to uncover the presence of a calcified plaque, using 2060 CTA images acquired from 60 patients. Higher‐order spectra cumulants were extracted from each image, thereby providing 2448 descriptive features per image. The features were then reduced using numerous well‐established techniques, and ranked according to t value. Subsequently, the reduced features were input to several classifiers to achieve the best diagnostic accuracy with a minimum number of features. Optimal results were obtained using the support vector machine with a radial basis function, having 22 features obtained with the multiple factor analysis feature reduction algorithm. The accuracy, positive predictive value, sensitivity, and specificity obtained were 95.83%, 97.05%, 94.54%, and 97.13%, respectively. Based on these results, the technique could be useful to automatically and accurately identify calcified plaque evident in CTA images, and may therefore become an important tool to help reduce procedural costs and patient radiation dose.</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.22369</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Angiography ; Arteries ; Atherosclerosis ; automated detection ; Automation ; CAD ; Calcification ; Cardiovascular disease ; Computed tomography ; Coronary artery disease ; Coronary vessels ; CTA ; Diagnostic systems ; Factor analysis ; Feature extraction ; higher‐order spectrum cumulants ; Image acquisition ; Medical imaging ; Radial basis function ; Radiation dosage ; Support vector machines</subject><ispartof>International journal of imaging systems and technology, 2020-06, Vol.30 (2), p.285-297</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-82a6f28d735da3f005b5b5ea8fa2df67cba98bd86c1c90cf32365db7d0a427e23</citedby><cites>FETCH-LOGICAL-c2979-82a6f28d735da3f005b5b5ea8fa2df67cba98bd86c1c90cf32365db7d0a427e23</cites><orcidid>0000-0002-0091-6049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fima.22369$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fima.22369$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Acharya, U Rajendra</creatorcontrib><creatorcontrib>Meiburger, Kristen M.</creatorcontrib><creatorcontrib>Koh, Joel E. W.</creatorcontrib><creatorcontrib>Ciaccio, Edward J.</creatorcontrib><creatorcontrib>Vicnesh, Jahmunah</creatorcontrib><creatorcontrib>Tan, Sock K.</creatorcontrib><creatorcontrib>Wong, Jeannie H. D.</creatorcontrib><creatorcontrib>Aman, Raja R. A. R.</creatorcontrib><creatorcontrib>Ng, Kwan H.</creatorcontrib><title>Automated detection of calcified plaque using higher‐order spectra cumulant technique in computer tomography angiography images</title><title>International journal of imaging systems and technology</title><description>Cardiovascular disease continues to be the leading cause of death globally. Often, it stems from atherosclerosis, which can trigger substantial variations in the coronary arteries, possibly causing coronary artery disease (CAD). Coronary artery calcification is known to be a strong and independent forecaster of CAD. Hence, coronary computer tomography angiography (CTA) has become a fundamental noninvasive imaging tool to characterize coronary artery plaques. In this article, an automated algorithm is presented to uncover the presence of a calcified plaque, using 2060 CTA images acquired from 60 patients. Higher‐order spectra cumulants were extracted from each image, thereby providing 2448 descriptive features per image. The features were then reduced using numerous well‐established techniques, and ranked according to t value. Subsequently, the reduced features were input to several classifiers to achieve the best diagnostic accuracy with a minimum number of features. Optimal results were obtained using the support vector machine with a radial basis function, having 22 features obtained with the multiple factor analysis feature reduction algorithm. The accuracy, positive predictive value, sensitivity, and specificity obtained were 95.83%, 97.05%, 94.54%, and 97.13%, respectively. Based on these results, the technique could be useful to automatically and accurately identify calcified plaque evident in CTA images, and may therefore become an important tool to help reduce procedural costs and patient radiation dose.</description><subject>Algorithms</subject><subject>Angiography</subject><subject>Arteries</subject><subject>Atherosclerosis</subject><subject>automated detection</subject><subject>Automation</subject><subject>CAD</subject><subject>Calcification</subject><subject>Cardiovascular disease</subject><subject>Computed tomography</subject><subject>Coronary artery disease</subject><subject>Coronary vessels</subject><subject>CTA</subject><subject>Diagnostic systems</subject><subject>Factor analysis</subject><subject>Feature extraction</subject><subject>higher‐order spectrum cumulants</subject><subject>Image acquisition</subject><subject>Medical imaging</subject><subject>Radial basis function</subject><subject>Radiation dosage</subject><subject>Support vector machines</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOI4ufIOAKxedSdJp0ywH8WdgxI2uQ5qfNkPb1KRFZqdv4DP6JKaOLuVCbhK-c-_hAHCJ0QIjRJa2FQtC0pwdgRlGrEim4xjMUMFYwlYZPQVnIewQwjhD2Qx8rMfBtWLQCio9aDlY10FnoBSNtMbG774Rr6OGY7BdBWtb1dp_vX86r7SHoY8KL6Ac27ER3QDjhLqzE287KF3bj0PE4gZXedHXeyi6yv7do9dKh3NwYkQT9MVvn4OXu9vnm4dk-3S_uVlvE0kYZUlBRG5IoWiaKZEahLIylhaFEUSZnMpSsKJURS6xZEiaNIaQqZIqJFaEapLOwdVhbu9dNBgGvnOj7-JKTlJGM4xpPlHXB0p6F4LXhvc--vR7jhGfEubxxX8SjuzywL7ZRu__B_nmcX1QfAMbcoHF</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Acharya, U Rajendra</creator><creator>Meiburger, Kristen M.</creator><creator>Koh, Joel E. W.</creator><creator>Ciaccio, Edward J.</creator><creator>Vicnesh, Jahmunah</creator><creator>Tan, Sock K.</creator><creator>Wong, Jeannie H. D.</creator><creator>Aman, Raja R. A. R.</creator><creator>Ng, Kwan H.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0091-6049</orcidid></search><sort><creationdate>202006</creationdate><title>Automated detection of calcified plaque using higher‐order spectra cumulant technique in computer tomography angiography images</title><author>Acharya, U Rajendra ; Meiburger, Kristen M. ; Koh, Joel E. W. ; Ciaccio, Edward J. ; Vicnesh, Jahmunah ; Tan, Sock K. ; Wong, Jeannie H. D. ; Aman, Raja R. A. R. ; Ng, Kwan H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-82a6f28d735da3f005b5b5ea8fa2df67cba98bd86c1c90cf32365db7d0a427e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Angiography</topic><topic>Arteries</topic><topic>Atherosclerosis</topic><topic>automated detection</topic><topic>Automation</topic><topic>CAD</topic><topic>Calcification</topic><topic>Cardiovascular disease</topic><topic>Computed tomography</topic><topic>Coronary artery disease</topic><topic>Coronary vessels</topic><topic>CTA</topic><topic>Diagnostic systems</topic><topic>Factor analysis</topic><topic>Feature extraction</topic><topic>higher‐order spectrum cumulants</topic><topic>Image acquisition</topic><topic>Medical imaging</topic><topic>Radial basis function</topic><topic>Radiation dosage</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acharya, U Rajendra</creatorcontrib><creatorcontrib>Meiburger, Kristen M.</creatorcontrib><creatorcontrib>Koh, Joel E. W.</creatorcontrib><creatorcontrib>Ciaccio, Edward J.</creatorcontrib><creatorcontrib>Vicnesh, Jahmunah</creatorcontrib><creatorcontrib>Tan, Sock K.</creatorcontrib><creatorcontrib>Wong, Jeannie H. D.</creatorcontrib><creatorcontrib>Aman, Raja R. A. R.</creatorcontrib><creatorcontrib>Ng, Kwan H.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acharya, U Rajendra</au><au>Meiburger, Kristen M.</au><au>Koh, Joel E. W.</au><au>Ciaccio, Edward J.</au><au>Vicnesh, Jahmunah</au><au>Tan, Sock K.</au><au>Wong, Jeannie H. D.</au><au>Aman, Raja R. A. R.</au><au>Ng, Kwan H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated detection of calcified plaque using higher‐order spectra cumulant technique in computer tomography angiography images</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2020-06</date><risdate>2020</risdate><volume>30</volume><issue>2</issue><spage>285</spage><epage>297</epage><pages>285-297</pages><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>Cardiovascular disease continues to be the leading cause of death globally. Often, it stems from atherosclerosis, which can trigger substantial variations in the coronary arteries, possibly causing coronary artery disease (CAD). Coronary artery calcification is known to be a strong and independent forecaster of CAD. Hence, coronary computer tomography angiography (CTA) has become a fundamental noninvasive imaging tool to characterize coronary artery plaques. In this article, an automated algorithm is presented to uncover the presence of a calcified plaque, using 2060 CTA images acquired from 60 patients. Higher‐order spectra cumulants were extracted from each image, thereby providing 2448 descriptive features per image. The features were then reduced using numerous well‐established techniques, and ranked according to t value. Subsequently, the reduced features were input to several classifiers to achieve the best diagnostic accuracy with a minimum number of features. Optimal results were obtained using the support vector machine with a radial basis function, having 22 features obtained with the multiple factor analysis feature reduction algorithm. The accuracy, positive predictive value, sensitivity, and specificity obtained were 95.83%, 97.05%, 94.54%, and 97.13%, respectively. Based on these results, the technique could be useful to automatically and accurately identify calcified plaque evident in CTA images, and may therefore become an important tool to help reduce procedural costs and patient radiation dose.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/ima.22369</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0091-6049</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-9457 |
ispartof | International journal of imaging systems and technology, 2020-06, Vol.30 (2), p.285-297 |
issn | 0899-9457 1098-1098 |
language | eng |
recordid | cdi_proquest_journals_2397511762 |
source | Wiley Journals |
subjects | Algorithms Angiography Arteries Atherosclerosis automated detection Automation CAD Calcification Cardiovascular disease Computed tomography Coronary artery disease Coronary vessels CTA Diagnostic systems Factor analysis Feature extraction higher‐order spectrum cumulants Image acquisition Medical imaging Radial basis function Radiation dosage Support vector machines |
title | Automated detection of calcified plaque using higher‐order spectra cumulant technique in computer tomography angiography images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20detection%20of%20calcified%20plaque%20using%20higher%E2%80%90order%20spectra%20cumulant%20technique%20in%20computer%20tomography%20angiography%20images&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Acharya,%20U%20Rajendra&rft.date=2020-06&rft.volume=30&rft.issue=2&rft.spage=285&rft.epage=297&rft.pages=285-297&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.22369&rft_dat=%3Cproquest_cross%3E2397511762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397511762&rft_id=info:pmid/&rfr_iscdi=true |