Highly Stretchable Polymers: Mechanical Properties Improvement by Balancing Intra‐ and Intermolecular Interactions

The mechanical properties of polymers are highly dependent on the mobility of the underlying chains. Changes in polymer architecture can affect inter‐ and intramolecular interactions, resulting in different chain dynamics. Herein, an enhancement in the mechanical properties of poly(butylmethacrylate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-05, Vol.30 (18), p.n/a
Hauptverfasser: Galant, Or, Bae, Suwon, Silberstein, Meredith N., Diesendruck, Charles E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page
container_title Advanced functional materials
container_volume 30
creator Galant, Or
Bae, Suwon
Silberstein, Meredith N.
Diesendruck, Charles E.
description The mechanical properties of polymers are highly dependent on the mobility of the underlying chains. Changes in polymer architecture can affect inter‐ and intramolecular interactions, resulting in different chain dynamics. Herein, an enhancement in the mechanical properties of poly(butylmethacrylate) is induced by folding the polymer chains through covalent intramolecular crosslinking (CL). Intramolecular CL causes an increase in intramolecular interactions and inhibition of intermolecular interactions. In both the glassy and rubbery states, this molecular rearrangement increases material stiffness. In the glassy state, this molecular rearrangement also leads to reduced failure strain, but surprisingly, in the rubbery state, the large strain elasticity is actually increased. An intermediate intramolecular CL degree, where there is a balance between intra‐ and intermolecular interactions, shows optimal mechanical properties. Molecular dynamics simulations are used to confirm and provide molecular mechanisms to explain the experimental results. Balancing intra‐ and intermolecular interactions, intramolecular collapse enhances polymer stiffness and strength especially at an intermediate point where intra‐ and intermolecular interactions are balanced. In the rubbery state, highly stretchable thermoplastic plastics are obtained, reaching over 1400% strain at break. Molecular dynamics simulations support the experimental results and explain the effect of chain folding to bulk properties.
doi_str_mv 10.1002/adfm.201901806
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2397473716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397473716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-91e4f861d19ab4448611997a520d569d8733c98e52364ba149fbad85b99997d43</originalsourceid><addsrcrecordid>eNqFUEFOwzAQtBBIlMKVsyXOLXbs2DG3Uiit1IpKgMTNchynTeU4xU5BufEE3shLSBVUjuxlZ1Yzu6sB4BKjIUYoulZZXg4jhAXCCWJHoIcZZgOCouT4gPHrKTgLYYMQ5pzQHqinxWptG_hUe1PrtUqtgcvKNqXx4QYuTDtyhVYWLn21Nb4uTICzcuurd1MaV8O0gbfKKqcLt4IzV3v1_fkFlcv2xPiyskbvrPIdVbouKhfOwUmubDAXv70PXib3z-PpYP74MBuP5gNNYs4GAhuaJwxnWKiUUtpCLARXcYSymIks4YRokZg4IoymClORpypL4lS0xTNK-uCq29v--7YzoZabaudde1JGRHDKCcesVQ07lfZVCN7kcuuLUvlGYiT3ycp9svKQbGsQneGjsKb5Ry1Hd5PFn_cHfJZ-yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397473716</pqid></control><display><type>article</type><title>Highly Stretchable Polymers: Mechanical Properties Improvement by Balancing Intra‐ and Intermolecular Interactions</title><source>Access via Wiley Online Library</source><creator>Galant, Or ; Bae, Suwon ; Silberstein, Meredith N. ; Diesendruck, Charles E.</creator><creatorcontrib>Galant, Or ; Bae, Suwon ; Silberstein, Meredith N. ; Diesendruck, Charles E.</creatorcontrib><description>The mechanical properties of polymers are highly dependent on the mobility of the underlying chains. Changes in polymer architecture can affect inter‐ and intramolecular interactions, resulting in different chain dynamics. Herein, an enhancement in the mechanical properties of poly(butylmethacrylate) is induced by folding the polymer chains through covalent intramolecular crosslinking (CL). Intramolecular CL causes an increase in intramolecular interactions and inhibition of intermolecular interactions. In both the glassy and rubbery states, this molecular rearrangement increases material stiffness. In the glassy state, this molecular rearrangement also leads to reduced failure strain, but surprisingly, in the rubbery state, the large strain elasticity is actually increased. An intermediate intramolecular CL degree, where there is a balance between intra‐ and intermolecular interactions, shows optimal mechanical properties. Molecular dynamics simulations are used to confirm and provide molecular mechanisms to explain the experimental results. Balancing intra‐ and intermolecular interactions, intramolecular collapse enhances polymer stiffness and strength especially at an intermediate point where intra‐ and intermolecular interactions are balanced. In the rubbery state, highly stretchable thermoplastic plastics are obtained, reaching over 1400% strain at break. Molecular dynamics simulations support the experimental results and explain the effect of chain folding to bulk properties.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201901806</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Chain dynamics ; Chains (polymeric) ; Crosslinking ; Dynamic mechanical properties ; intramolecular collapse ; Materials science ; Mechanical properties ; Molecular dynamics ; Polymers ; Stiffness ; Strain ; thermoplastics</subject><ispartof>Advanced functional materials, 2020-05, Vol.30 (18), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-91e4f861d19ab4448611997a520d569d8733c98e52364ba149fbad85b99997d43</citedby><cites>FETCH-LOGICAL-c3576-91e4f861d19ab4448611997a520d569d8733c98e52364ba149fbad85b99997d43</cites><orcidid>0000-0002-9263-5817 ; 0000-0002-6853-9796 ; 0000-0001-5576-1366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201901806$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201901806$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Galant, Or</creatorcontrib><creatorcontrib>Bae, Suwon</creatorcontrib><creatorcontrib>Silberstein, Meredith N.</creatorcontrib><creatorcontrib>Diesendruck, Charles E.</creatorcontrib><title>Highly Stretchable Polymers: Mechanical Properties Improvement by Balancing Intra‐ and Intermolecular Interactions</title><title>Advanced functional materials</title><description>The mechanical properties of polymers are highly dependent on the mobility of the underlying chains. Changes in polymer architecture can affect inter‐ and intramolecular interactions, resulting in different chain dynamics. Herein, an enhancement in the mechanical properties of poly(butylmethacrylate) is induced by folding the polymer chains through covalent intramolecular crosslinking (CL). Intramolecular CL causes an increase in intramolecular interactions and inhibition of intermolecular interactions. In both the glassy and rubbery states, this molecular rearrangement increases material stiffness. In the glassy state, this molecular rearrangement also leads to reduced failure strain, but surprisingly, in the rubbery state, the large strain elasticity is actually increased. An intermediate intramolecular CL degree, where there is a balance between intra‐ and intermolecular interactions, shows optimal mechanical properties. Molecular dynamics simulations are used to confirm and provide molecular mechanisms to explain the experimental results. Balancing intra‐ and intermolecular interactions, intramolecular collapse enhances polymer stiffness and strength especially at an intermediate point where intra‐ and intermolecular interactions are balanced. In the rubbery state, highly stretchable thermoplastic plastics are obtained, reaching over 1400% strain at break. Molecular dynamics simulations support the experimental results and explain the effect of chain folding to bulk properties.</description><subject>Chain dynamics</subject><subject>Chains (polymeric)</subject><subject>Crosslinking</subject><subject>Dynamic mechanical properties</subject><subject>intramolecular collapse</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>Polymers</subject><subject>Stiffness</subject><subject>Strain</subject><subject>thermoplastics</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUEFOwzAQtBBIlMKVsyXOLXbs2DG3Uiit1IpKgMTNchynTeU4xU5BufEE3shLSBVUjuxlZ1Yzu6sB4BKjIUYoulZZXg4jhAXCCWJHoIcZZgOCouT4gPHrKTgLYYMQ5pzQHqinxWptG_hUe1PrtUqtgcvKNqXx4QYuTDtyhVYWLn21Nb4uTICzcuurd1MaV8O0gbfKKqcLt4IzV3v1_fkFlcv2xPiyskbvrPIdVbouKhfOwUmubDAXv70PXib3z-PpYP74MBuP5gNNYs4GAhuaJwxnWKiUUtpCLARXcYSymIks4YRokZg4IoymClORpypL4lS0xTNK-uCq29v--7YzoZabaudde1JGRHDKCcesVQ07lfZVCN7kcuuLUvlGYiT3ycp9svKQbGsQneGjsKb5Ry1Hd5PFn_cHfJZ-yg</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Galant, Or</creator><creator>Bae, Suwon</creator><creator>Silberstein, Meredith N.</creator><creator>Diesendruck, Charles E.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9263-5817</orcidid><orcidid>https://orcid.org/0000-0002-6853-9796</orcidid><orcidid>https://orcid.org/0000-0001-5576-1366</orcidid></search><sort><creationdate>20200501</creationdate><title>Highly Stretchable Polymers: Mechanical Properties Improvement by Balancing Intra‐ and Intermolecular Interactions</title><author>Galant, Or ; Bae, Suwon ; Silberstein, Meredith N. ; Diesendruck, Charles E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-91e4f861d19ab4448611997a520d569d8733c98e52364ba149fbad85b99997d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chain dynamics</topic><topic>Chains (polymeric)</topic><topic>Crosslinking</topic><topic>Dynamic mechanical properties</topic><topic>intramolecular collapse</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>Polymers</topic><topic>Stiffness</topic><topic>Strain</topic><topic>thermoplastics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galant, Or</creatorcontrib><creatorcontrib>Bae, Suwon</creatorcontrib><creatorcontrib>Silberstein, Meredith N.</creatorcontrib><creatorcontrib>Diesendruck, Charles E.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galant, Or</au><au>Bae, Suwon</au><au>Silberstein, Meredith N.</au><au>Diesendruck, Charles E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Stretchable Polymers: Mechanical Properties Improvement by Balancing Intra‐ and Intermolecular Interactions</atitle><jtitle>Advanced functional materials</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>30</volume><issue>18</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The mechanical properties of polymers are highly dependent on the mobility of the underlying chains. Changes in polymer architecture can affect inter‐ and intramolecular interactions, resulting in different chain dynamics. Herein, an enhancement in the mechanical properties of poly(butylmethacrylate) is induced by folding the polymer chains through covalent intramolecular crosslinking (CL). Intramolecular CL causes an increase in intramolecular interactions and inhibition of intermolecular interactions. In both the glassy and rubbery states, this molecular rearrangement increases material stiffness. In the glassy state, this molecular rearrangement also leads to reduced failure strain, but surprisingly, in the rubbery state, the large strain elasticity is actually increased. An intermediate intramolecular CL degree, where there is a balance between intra‐ and intermolecular interactions, shows optimal mechanical properties. Molecular dynamics simulations are used to confirm and provide molecular mechanisms to explain the experimental results. Balancing intra‐ and intermolecular interactions, intramolecular collapse enhances polymer stiffness and strength especially at an intermediate point where intra‐ and intermolecular interactions are balanced. In the rubbery state, highly stretchable thermoplastic plastics are obtained, reaching over 1400% strain at break. Molecular dynamics simulations support the experimental results and explain the effect of chain folding to bulk properties.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201901806</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9263-5817</orcidid><orcidid>https://orcid.org/0000-0002-6853-9796</orcidid><orcidid>https://orcid.org/0000-0001-5576-1366</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-05, Vol.30 (18), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2397473716
source Access via Wiley Online Library
subjects Chain dynamics
Chains (polymeric)
Crosslinking
Dynamic mechanical properties
intramolecular collapse
Materials science
Mechanical properties
Molecular dynamics
Polymers
Stiffness
Strain
thermoplastics
title Highly Stretchable Polymers: Mechanical Properties Improvement by Balancing Intra‐ and Intermolecular Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Stretchable%20Polymers:%20Mechanical%20Properties%20Improvement%20by%20Balancing%20Intra%E2%80%90%20and%20Intermolecular%20Interactions&rft.jtitle=Advanced%20functional%20materials&rft.au=Galant,%20Or&rft.date=2020-05-01&rft.volume=30&rft.issue=18&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201901806&rft_dat=%3Cproquest_cross%3E2397473716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397473716&rft_id=info:pmid/&rfr_iscdi=true