Transfer learning with deep convolutional neural network for constitution classification with face image

Constitution classification is the basis and core content of constitution research in Traditional Chinese medicine. The convolutional neural networks have successfully established many models for image classification, but it requires a lot of training data. In the field of Traditional Chinese medici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2020-05, Vol.79 (17-18), p.11905-11919
Hauptverfasser: Huan, Er-Yang, Wen, Gui-Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11919
container_issue 17-18
container_start_page 11905
container_title Multimedia tools and applications
container_volume 79
creator Huan, Er-Yang
Wen, Gui-Hua
description Constitution classification is the basis and core content of constitution research in Traditional Chinese medicine. The convolutional neural networks have successfully established many models for image classification, but it requires a lot of training data. In the field of Traditional Chinese medicine, the available clinical data is very limited. To solve this problem, we propose a method for constitution classification through transfer learning. Firstly, the DenseNet-169 model trained in ImageNet is applied. Secondly, we carefully modify the DenseNet-169 structure according to the constitution characteristics, and then the modified model is trained in the clinical data to obtain the constitution identification network called ConstitutionNet. In order to further improve the accuracy of classification, we integrate the ConstitutionNet with Vgg-16, Inception v3 and DenseNet-121 to test according to the integrated learning idea, and judge the input face image to its constitution type. The experimental results show that transfer learning can achieve better results in small clinical dataset, and the final accuracy of constitution recognition is 66.79%.
doi_str_mv 10.1007/s11042-019-08376-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2397280370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397280370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6913b3427a49e35e184fe5958677a8419fe24202630ee59cafdfb01eefd45d03</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFb_gKsB16N3XplkKUWtUHDT_TBN7rSpMVNnEov_3jQR3Lm6D75zOBxCbjnccwDzkDgHJRjwgkEuTcb0GZlxbSQzRvDzYZc5MKOBX5KrlPYAPNNCzchuHV2bPEbaoItt3W7pse52tEI80DK0X6Hpuzq0rqEt9nEc3THEd-pDPAGpq7uRoGXjUqp9XbrxHG28K5HWH26L1-TCuybhze-ck_Xz03qxZKu3l9fF44qVkhcdywouN1IJ41SBUiPPlUdd6DwzxuWKFx6FEiAyCTj8S-crvwGO6CulK5BzcjfZHmL47DF1dh_6OMRPVsjCiBykOVFiosoYUoro7SEOKeO35WBPhdqpUDsUasdCrR5EchKlAW63GP-s_1H9APGreqI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397280370</pqid></control><display><type>article</type><title>Transfer learning with deep convolutional neural network for constitution classification with face image</title><source>SpringerLink Journals</source><creator>Huan, Er-Yang ; Wen, Gui-Hua</creator><creatorcontrib>Huan, Er-Yang ; Wen, Gui-Hua</creatorcontrib><description>Constitution classification is the basis and core content of constitution research in Traditional Chinese medicine. The convolutional neural networks have successfully established many models for image classification, but it requires a lot of training data. In the field of Traditional Chinese medicine, the available clinical data is very limited. To solve this problem, we propose a method for constitution classification through transfer learning. Firstly, the DenseNet-169 model trained in ImageNet is applied. Secondly, we carefully modify the DenseNet-169 structure according to the constitution characteristics, and then the modified model is trained in the clinical data to obtain the constitution identification network called ConstitutionNet. In order to further improve the accuracy of classification, we integrate the ConstitutionNet with Vgg-16, Inception v3 and DenseNet-121 to test according to the integrated learning idea, and judge the input face image to its constitution type. The experimental results show that transfer learning can achieve better results in small clinical dataset, and the final accuracy of constitution recognition is 66.79%.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-08376-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Chinese medicine ; Classification ; Computer Communication Networks ; Computer Science ; Constitution ; Data Structures and Information Theory ; Image classification ; Learning ; Multimedia Information Systems ; Neural networks ; Special Purpose and Application-Based Systems ; Traditional Chinese medicine</subject><ispartof>Multimedia tools and applications, 2020-05, Vol.79 (17-18), p.11905-11919</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6913b3427a49e35e184fe5958677a8419fe24202630ee59cafdfb01eefd45d03</citedby><cites>FETCH-LOGICAL-c319t-6913b3427a49e35e184fe5958677a8419fe24202630ee59cafdfb01eefd45d03</cites><orcidid>0000-0002-9709-1126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-019-08376-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-019-08376-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Huan, Er-Yang</creatorcontrib><creatorcontrib>Wen, Gui-Hua</creatorcontrib><title>Transfer learning with deep convolutional neural network for constitution classification with face image</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Constitution classification is the basis and core content of constitution research in Traditional Chinese medicine. The convolutional neural networks have successfully established many models for image classification, but it requires a lot of training data. In the field of Traditional Chinese medicine, the available clinical data is very limited. To solve this problem, we propose a method for constitution classification through transfer learning. Firstly, the DenseNet-169 model trained in ImageNet is applied. Secondly, we carefully modify the DenseNet-169 structure according to the constitution characteristics, and then the modified model is trained in the clinical data to obtain the constitution identification network called ConstitutionNet. In order to further improve the accuracy of classification, we integrate the ConstitutionNet with Vgg-16, Inception v3 and DenseNet-121 to test according to the integrated learning idea, and judge the input face image to its constitution type. The experimental results show that transfer learning can achieve better results in small clinical dataset, and the final accuracy of constitution recognition is 66.79%.</description><subject>Artificial neural networks</subject><subject>Chinese medicine</subject><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Constitution</subject><subject>Data Structures and Information Theory</subject><subject>Image classification</subject><subject>Learning</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Traditional Chinese medicine</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLw0AUhQdRsFb_gKsB16N3XplkKUWtUHDT_TBN7rSpMVNnEov_3jQR3Lm6D75zOBxCbjnccwDzkDgHJRjwgkEuTcb0GZlxbSQzRvDzYZc5MKOBX5KrlPYAPNNCzchuHV2bPEbaoItt3W7pse52tEI80DK0X6Hpuzq0rqEt9nEc3THEd-pDPAGpq7uRoGXjUqp9XbrxHG28K5HWH26L1-TCuybhze-ck_Xz03qxZKu3l9fF44qVkhcdywouN1IJ41SBUiPPlUdd6DwzxuWKFx6FEiAyCTj8S-crvwGO6CulK5BzcjfZHmL47DF1dh_6OMRPVsjCiBykOVFiosoYUoro7SEOKeO35WBPhdqpUDsUasdCrR5EchKlAW63GP-s_1H9APGreqI</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Huan, Er-Yang</creator><creator>Wen, Gui-Hua</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9709-1126</orcidid></search><sort><creationdate>20200501</creationdate><title>Transfer learning with deep convolutional neural network for constitution classification with face image</title><author>Huan, Er-Yang ; Wen, Gui-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6913b3427a49e35e184fe5958677a8419fe24202630ee59cafdfb01eefd45d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Chinese medicine</topic><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Constitution</topic><topic>Data Structures and Information Theory</topic><topic>Image classification</topic><topic>Learning</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Traditional Chinese medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huan, Er-Yang</creatorcontrib><creatorcontrib>Wen, Gui-Hua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huan, Er-Yang</au><au>Wen, Gui-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer learning with deep convolutional neural network for constitution classification with face image</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>79</volume><issue>17-18</issue><spage>11905</spage><epage>11919</epage><pages>11905-11919</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Constitution classification is the basis and core content of constitution research in Traditional Chinese medicine. The convolutional neural networks have successfully established many models for image classification, but it requires a lot of training data. In the field of Traditional Chinese medicine, the available clinical data is very limited. To solve this problem, we propose a method for constitution classification through transfer learning. Firstly, the DenseNet-169 model trained in ImageNet is applied. Secondly, we carefully modify the DenseNet-169 structure according to the constitution characteristics, and then the modified model is trained in the clinical data to obtain the constitution identification network called ConstitutionNet. In order to further improve the accuracy of classification, we integrate the ConstitutionNet with Vgg-16, Inception v3 and DenseNet-121 to test according to the integrated learning idea, and judge the input face image to its constitution type. The experimental results show that transfer learning can achieve better results in small clinical dataset, and the final accuracy of constitution recognition is 66.79%.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-019-08376-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9709-1126</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2020-05, Vol.79 (17-18), p.11905-11919
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2397280370
source SpringerLink Journals
subjects Artificial neural networks
Chinese medicine
Classification
Computer Communication Networks
Computer Science
Constitution
Data Structures and Information Theory
Image classification
Learning
Multimedia Information Systems
Neural networks
Special Purpose and Application-Based Systems
Traditional Chinese medicine
title Transfer learning with deep convolutional neural network for constitution classification with face image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20learning%20with%20deep%20convolutional%20neural%20network%20for%20constitution%20classification%20with%20face%20image&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Huan,%20Er-Yang&rft.date=2020-05-01&rft.volume=79&rft.issue=17-18&rft.spage=11905&rft.epage=11919&rft.pages=11905-11919&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-08376-5&rft_dat=%3Cproquest_cross%3E2397280370%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397280370&rft_id=info:pmid/&rfr_iscdi=true