Numerical Treatment for Stochastic Computer Virus Model
This writing is an attempt to explain a reliable numerical treatment for stochastic computer virus model. We are comparing the solutions of stochastic and deterministic computer virus models. This paper reveals that a stochastic computer virus paradigm is pragmatic in contrast to the deterministic c...
Gespeichert in:
Veröffentlicht in: | Computer modeling in engineering & sciences 2019-01, Vol.120 (2), p.445-465 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 465 |
---|---|
container_issue | 2 |
container_start_page | 445 |
container_title | Computer modeling in engineering & sciences |
container_volume | 120 |
creator | Raza, Ali Arif, Muhammad Shoaib Rafiq, Muhammad Bibi, Mairaj Naveed, Muhammad Iqbal, Muhammad Usman Butt, Zubair Naseem, Hafiza Anum Abbasi, Javeria Nawaz |
description | This writing is an attempt to explain a reliable numerical treatment for stochastic computer virus model. We are comparing the solutions of stochastic and deterministic computer virus models. This paper reveals that a stochastic computer virus paradigm is pragmatic in contrast to the
deterministic computer virus model. Outcomes of threshold number C* hold in stochastic computer virus model. If C* < 1 then in such a condition virus controlled in the computer population while C* > 1 shows virus persists in the computer population. Unfortunately, stochastic numerical
methods fail to cope with large step sizes of time. The suggested structure of the stochastic non-standard finite difference scheme (SNSFD) maintains all diverse characteristics such as dynamical consistency, boundedness and positivity as defined by Mickens. The numerical treatment for the
stochastic computer virus model manifested that increasing the antivirus ability ultimates small virus dominance in a computer community. |
doi_str_mv | 10.32604/cmes.2019.06454 |
format | Article |
fullrecord | <record><control><sourceid>pubtec_proqu</sourceid><recordid>TN_cdi_proquest_journals_2397267145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ingid>tsp/cmes/2019/00000120/00000002/art00013</ingid><sourcerecordid>tsp/cmes/2019/00000120/00000002/art00013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-495b2c7af51f5f9325d1b63399d2e027273d99dacd73b85a0bf5c5679a473bf23</originalsourceid><addsrcrecordid>eNp9kDtPxDAQhC0EEsdBTxmJOsf6HXegEy-JR8FBazmODTldLsF2Cv49yQUEFdvsaDSzK30InWJYUCKAndvGxQUBrBYgGGd7aIY5ETnmIPZ_NFPkEB3FuAagghZqhuRj37hQW7PJVsGZ1LhtynwbsufU2ncTU22zZdt0fXIhe61DH7OHtnKbY3TgzSa6k-89Ry_XV6vlbX7_dHO3vLzPLVVFypniJbHSeI4994oSXuFSUKpURRwQSSStBm1sJWlZcAOl55YLqQwbDE_oHJ1Nd7vQfvQuJr1u-7AdXmpClSRCYsb_TRHJFS4YjCmYUja0MQbndRfqxoRPjUHvIOoRoh4h6h3EoXIxVert20DG_N5NsfubHgcTmAQA0Sak0aL0C4ikd7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397267145</pqid></control><display><type>article</type><title>Numerical Treatment for Stochastic Computer Virus Model</title><source>Tech Science Press</source><source>EZB Electronic Journals Library</source><creator>Raza, Ali ; Arif, Muhammad Shoaib ; Rafiq, Muhammad ; Bibi, Mairaj ; Naveed, Muhammad ; Iqbal, Muhammad Usman ; Butt, Zubair ; Naseem, Hafiza Anum ; Abbasi, Javeria Nawaz</creator><creatorcontrib>Raza, Ali ; Arif, Muhammad Shoaib ; Rafiq, Muhammad ; Bibi, Mairaj ; Naveed, Muhammad ; Iqbal, Muhammad Usman ; Butt, Zubair ; Naseem, Hafiza Anum ; Abbasi, Javeria Nawaz</creatorcontrib><description>This writing is an attempt to explain a reliable numerical treatment for stochastic computer virus model. We are comparing the solutions of stochastic and deterministic computer virus models. This paper reveals that a stochastic computer virus paradigm is pragmatic in contrast to the
deterministic computer virus model. Outcomes of threshold number C* hold in stochastic computer virus model. If C* < 1 then in such a condition virus controlled in the computer population while C* > 1 shows virus persists in the computer population. Unfortunately, stochastic numerical
methods fail to cope with large step sizes of time. The suggested structure of the stochastic non-standard finite difference scheme (SNSFD) maintains all diverse characteristics such as dynamical consistency, boundedness and positivity as defined by Mickens. The numerical treatment for the
stochastic computer virus model manifested that increasing the antivirus ability ultimates small virus dominance in a computer community.</description><identifier>ISSN: 1526-1492</identifier><identifier>ISSN: 1526-1506</identifier><identifier>EISSN: 1526-1506</identifier><identifier>DOI: 10.32604/cmes.2019.06454</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Computer Virus ; Computer viruses ; Euler Maruyama Scheme ; Finite difference method ; Mathematical models ; Numerical methods ; Stability ; Stochastic Differential Equations ; Stochastic Euler Scheme ; Stochastic Nsfd Scheme ; Stochastic Runge-Kutta Scheme</subject><ispartof>Computer modeling in engineering & sciences, 2019-01, Vol.120 (2), p.445-465</ispartof><rights>Copyright Tech Science Press 2019</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-495b2c7af51f5f9325d1b63399d2e027273d99dacd73b85a0bf5c5679a473bf23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Raza, Ali</creatorcontrib><creatorcontrib>Arif, Muhammad Shoaib</creatorcontrib><creatorcontrib>Rafiq, Muhammad</creatorcontrib><creatorcontrib>Bibi, Mairaj</creatorcontrib><creatorcontrib>Naveed, Muhammad</creatorcontrib><creatorcontrib>Iqbal, Muhammad Usman</creatorcontrib><creatorcontrib>Butt, Zubair</creatorcontrib><creatorcontrib>Naseem, Hafiza Anum</creatorcontrib><creatorcontrib>Abbasi, Javeria Nawaz</creatorcontrib><title>Numerical Treatment for Stochastic Computer Virus Model</title><title>Computer modeling in engineering & sciences</title><description>This writing is an attempt to explain a reliable numerical treatment for stochastic computer virus model. We are comparing the solutions of stochastic and deterministic computer virus models. This paper reveals that a stochastic computer virus paradigm is pragmatic in contrast to the
deterministic computer virus model. Outcomes of threshold number C* hold in stochastic computer virus model. If C* < 1 then in such a condition virus controlled in the computer population while C* > 1 shows virus persists in the computer population. Unfortunately, stochastic numerical
methods fail to cope with large step sizes of time. The suggested structure of the stochastic non-standard finite difference scheme (SNSFD) maintains all diverse characteristics such as dynamical consistency, boundedness and positivity as defined by Mickens. The numerical treatment for the
stochastic computer virus model manifested that increasing the antivirus ability ultimates small virus dominance in a computer community.</description><subject>Computer Virus</subject><subject>Computer viruses</subject><subject>Euler Maruyama Scheme</subject><subject>Finite difference method</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Stability</subject><subject>Stochastic Differential Equations</subject><subject>Stochastic Euler Scheme</subject><subject>Stochastic Nsfd Scheme</subject><subject>Stochastic Runge-Kutta Scheme</subject><issn>1526-1492</issn><issn>1526-1506</issn><issn>1526-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kDtPxDAQhC0EEsdBTxmJOsf6HXegEy-JR8FBazmODTldLsF2Cv49yQUEFdvsaDSzK30InWJYUCKAndvGxQUBrBYgGGd7aIY5ETnmIPZ_NFPkEB3FuAagghZqhuRj37hQW7PJVsGZ1LhtynwbsufU2ncTU22zZdt0fXIhe61DH7OHtnKbY3TgzSa6k-89Ry_XV6vlbX7_dHO3vLzPLVVFypniJbHSeI4994oSXuFSUKpURRwQSSStBm1sJWlZcAOl55YLqQwbDE_oHJ1Nd7vQfvQuJr1u-7AdXmpClSRCYsb_TRHJFS4YjCmYUja0MQbndRfqxoRPjUHvIOoRoh4h6h3EoXIxVert20DG_N5NsfubHgcTmAQA0Sak0aL0C4ikd7k</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Raza, Ali</creator><creator>Arif, Muhammad Shoaib</creator><creator>Rafiq, Muhammad</creator><creator>Bibi, Mairaj</creator><creator>Naveed, Muhammad</creator><creator>Iqbal, Muhammad Usman</creator><creator>Butt, Zubair</creator><creator>Naseem, Hafiza Anum</creator><creator>Abbasi, Javeria Nawaz</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190101</creationdate><title>Numerical Treatment for Stochastic Computer Virus Model</title><author>Raza, Ali ; Arif, Muhammad Shoaib ; Rafiq, Muhammad ; Bibi, Mairaj ; Naveed, Muhammad ; Iqbal, Muhammad Usman ; Butt, Zubair ; Naseem, Hafiza Anum ; Abbasi, Javeria Nawaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-495b2c7af51f5f9325d1b63399d2e027273d99dacd73b85a0bf5c5679a473bf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Virus</topic><topic>Computer viruses</topic><topic>Euler Maruyama Scheme</topic><topic>Finite difference method</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Stability</topic><topic>Stochastic Differential Equations</topic><topic>Stochastic Euler Scheme</topic><topic>Stochastic Nsfd Scheme</topic><topic>Stochastic Runge-Kutta Scheme</topic><toplevel>online_resources</toplevel><creatorcontrib>Raza, Ali</creatorcontrib><creatorcontrib>Arif, Muhammad Shoaib</creatorcontrib><creatorcontrib>Rafiq, Muhammad</creatorcontrib><creatorcontrib>Bibi, Mairaj</creatorcontrib><creatorcontrib>Naveed, Muhammad</creatorcontrib><creatorcontrib>Iqbal, Muhammad Usman</creatorcontrib><creatorcontrib>Butt, Zubair</creatorcontrib><creatorcontrib>Naseem, Hafiza Anum</creatorcontrib><creatorcontrib>Abbasi, Javeria Nawaz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computer modeling in engineering & sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raza, Ali</au><au>Arif, Muhammad Shoaib</au><au>Rafiq, Muhammad</au><au>Bibi, Mairaj</au><au>Naveed, Muhammad</au><au>Iqbal, Muhammad Usman</au><au>Butt, Zubair</au><au>Naseem, Hafiza Anum</au><au>Abbasi, Javeria Nawaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Treatment for Stochastic Computer Virus Model</atitle><jtitle>Computer modeling in engineering & sciences</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>120</volume><issue>2</issue><spage>445</spage><epage>465</epage><pages>445-465</pages><issn>1526-1492</issn><issn>1526-1506</issn><eissn>1526-1506</eissn><abstract>This writing is an attempt to explain a reliable numerical treatment for stochastic computer virus model. We are comparing the solutions of stochastic and deterministic computer virus models. This paper reveals that a stochastic computer virus paradigm is pragmatic in contrast to the
deterministic computer virus model. Outcomes of threshold number C* hold in stochastic computer virus model. If C* < 1 then in such a condition virus controlled in the computer population while C* > 1 shows virus persists in the computer population. Unfortunately, stochastic numerical
methods fail to cope with large step sizes of time. The suggested structure of the stochastic non-standard finite difference scheme (SNSFD) maintains all diverse characteristics such as dynamical consistency, boundedness and positivity as defined by Mickens. The numerical treatment for the
stochastic computer virus model manifested that increasing the antivirus ability ultimates small virus dominance in a computer community.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmes.2019.06454</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-1492 |
ispartof | Computer modeling in engineering & sciences, 2019-01, Vol.120 (2), p.445-465 |
issn | 1526-1492 1526-1506 1526-1506 |
language | eng |
recordid | cdi_proquest_journals_2397267145 |
source | Tech Science Press; EZB Electronic Journals Library |
subjects | Computer Virus Computer viruses Euler Maruyama Scheme Finite difference method Mathematical models Numerical methods Stability Stochastic Differential Equations Stochastic Euler Scheme Stochastic Nsfd Scheme Stochastic Runge-Kutta Scheme |
title | Numerical Treatment for Stochastic Computer Virus Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubtec_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Treatment%20for%20Stochastic%20Computer%20Virus%20Model&rft.jtitle=Computer%20modeling%20in%20engineering%20&%20sciences&rft.au=Raza,%20Ali&rft.date=2019-01-01&rft.volume=120&rft.issue=2&rft.spage=445&rft.epage=465&rft.pages=445-465&rft.issn=1526-1492&rft.eissn=1526-1506&rft_id=info:doi/10.32604/cmes.2019.06454&rft_dat=%3Cpubtec_proqu%3Etsp/cmes/2019/00000120/00000002/art00013%3C/pubtec_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397267145&rft_id=info:pmid/&rft_ingid=tsp/cmes/2019/00000120/00000002/art00013&rfr_iscdi=true |