Flood Area Detection Using ALOS-2 PALSAR-2 Data for the 2015 Heavy Rainfall Disaster in the Kanto and Tohoku Area, Japan
Rapid and all-weather detection of flood area is needed for monitoring and mitigating flood disasters. This paper addressed flood area detection by using ALOS-2 PALSAR-2 data acquired during the 2015 heavy rainfall disaster in Kanto and Tohoku area, Japan. We propose an approach to detect flood area...
Gespeichert in:
Veröffentlicht in: | Journal of The Remote Sensing Society of Japan 2019, Vol.39(Supplement), pp.S43-S55 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S55 |
---|---|
container_issue | Supplement |
container_start_page | S43 |
container_title | Journal of The Remote Sensing Society of Japan |
container_volume | 39 |
creator | OHKI, Masato WATANABE, Manabu NATSUAKI, Ryo MOTOHKA, Takeshi NAGAI, Hiroto TADONO, Takeo SUZUKI, Shinichi ISHII, Keiko ITOH, Takuya YAMANOKUCHI, Tsutomu SHIMADA, Masanobu |
description | Rapid and all-weather detection of flood area is needed for monitoring and mitigating flood disasters. This paper addressed flood area detection by using ALOS-2 PALSAR-2 data acquired during the 2015 heavy rainfall disaster in Kanto and Tohoku area, Japan. We propose an approach to detect flood area by thresholding of amplitude image and interferometric coherence image for non-urban area and urban area, respectively. The PALSAR-2-derived flood areas are validated using the inundation map provided by the Geospatial Information Authority of Japan (GSI) and showed 75% accuracy and 0.51 kappa coefficient in flood/non-flood discrimination. Effectiveness of lower incidence angle (less than 40 degrees) and a high sensitive observation mode (6m resolution mode) for detecting non-urban flood are also demonstrated by a comparative study. Interferometric phase variation was revealed to be effective for detecting urban-area flood compared to conventional interferometric coherence. The results demonstrated the feasibility of PALSAR-2 for rapid flood monitoring and can be used as a reference for possible future flood disasters. |
doi_str_mv | 10.11440/rssj.39.S43 |
format | Article |
fullrecord | <record><control><sourceid>proquest_jstag</sourceid><recordid>TN_cdi_proquest_journals_2397246594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397246594</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2884-7d8eb72e0b61b9fec5bf6d753f16415cc5b7f9bbecae080b2c03a17769cc71053</originalsourceid><addsrcrecordid>eNo9kEtP4zAUhS3ESFTAbn6ApdlOOn4ltpcR5TFQCURhHd24NzSdYGdsF8G_JxTE6p4jfece6RDyk7M550qxPzGl7Vza-UrJAzLjxsiCc6MOyYwJYwttOT8ipyn1LWNCGamVnJHXiyGENa0jAl1gRpf74Olj6v0TrZe3q0LQu3q5qu8nsYAMtAuR5g1SwXhJrxBe3ug99L6DYaCLPkHKGGnv98wN-Bwo-DV9CJvwb7ev-U2vYQR_Qn5MmYSnX_eYPF6cP5xdFcvby79n9bLYCmNUodcGWy2QtRVvbYeubLtqrUvZ8Urx0k1ed7Zt0QEyw1rhmASudWWd05yV8pj8-vw7xvB_hyk327CLfqpshLRaqKq0aqIuP6ltyvCEzRj7Z4hvDcTcuwGbj20baZvVbhwHfEaf907Jb8JtIDbo5TtpuHeC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397246594</pqid></control><display><type>article</type><title>Flood Area Detection Using ALOS-2 PALSAR-2 Data for the 2015 Heavy Rainfall Disaster in the Kanto and Tohoku Area, Japan</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>AgriKnowledge(アグリナレッジ)AGROLib</source><creator>OHKI, Masato ; WATANABE, Manabu ; NATSUAKI, Ryo ; MOTOHKA, Takeshi ; NAGAI, Hiroto ; TADONO, Takeo ; SUZUKI, Shinichi ; ISHII, Keiko ; ITOH, Takuya ; YAMANOKUCHI, Tsutomu ; SHIMADA, Masanobu</creator><creatorcontrib>OHKI, Masato ; WATANABE, Manabu ; NATSUAKI, Ryo ; MOTOHKA, Takeshi ; NAGAI, Hiroto ; TADONO, Takeo ; SUZUKI, Shinichi ; ISHII, Keiko ; ITOH, Takuya ; YAMANOKUCHI, Tsutomu ; SHIMADA, Masanobu</creatorcontrib><description>Rapid and all-weather detection of flood area is needed for monitoring and mitigating flood disasters. This paper addressed flood area detection by using ALOS-2 PALSAR-2 data acquired during the 2015 heavy rainfall disaster in Kanto and Tohoku area, Japan. We propose an approach to detect flood area by thresholding of amplitude image and interferometric coherence image for non-urban area and urban area, respectively. The PALSAR-2-derived flood areas are validated using the inundation map provided by the Geospatial Information Authority of Japan (GSI) and showed 75% accuracy and 0.51 kappa coefficient in flood/non-flood discrimination. Effectiveness of lower incidence angle (less than 40 degrees) and a high sensitive observation mode (6m resolution mode) for detecting non-urban flood are also demonstrated by a comparative study. Interferometric phase variation was revealed to be effective for detecting urban-area flood compared to conventional interferometric coherence. The results demonstrated the feasibility of PALSAR-2 for rapid flood monitoring and can be used as a reference for possible future flood disasters.</description><identifier>ISSN: 0289-7911</identifier><identifier>EISSN: 1883-1184</identifier><identifier>DOI: 10.11440/rssj.39.S43</identifier><language>eng</language><publisher>Tokyo: The Remote Sensing Society of Japan</publisher><subject>ALOS-2 PALSAR-2 ; Coherence ; Comparative analysis ; Comparative studies ; Data acquisition ; Detection ; Disaster management ; disaster monitoring ; Disasters ; Feasibility studies ; Flood control ; Flood mapping ; flooding ; Floods ; Hydrologic data ; Image detection ; Incidence angle ; Interferometry ; Monitoring ; Rain ; Rainfall ; synthetic aperture radar ; Urban areas ; Weather</subject><ispartof>Journal of The Remote Sensing Society of Japan, 2019, Vol.39(Supplement), pp.S43-S55</ispartof><rights>2019 The Remote Sensing Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>OHKI, Masato</creatorcontrib><creatorcontrib>WATANABE, Manabu</creatorcontrib><creatorcontrib>NATSUAKI, Ryo</creatorcontrib><creatorcontrib>MOTOHKA, Takeshi</creatorcontrib><creatorcontrib>NAGAI, Hiroto</creatorcontrib><creatorcontrib>TADONO, Takeo</creatorcontrib><creatorcontrib>SUZUKI, Shinichi</creatorcontrib><creatorcontrib>ISHII, Keiko</creatorcontrib><creatorcontrib>ITOH, Takuya</creatorcontrib><creatorcontrib>YAMANOKUCHI, Tsutomu</creatorcontrib><creatorcontrib>SHIMADA, Masanobu</creatorcontrib><title>Flood Area Detection Using ALOS-2 PALSAR-2 Data for the 2015 Heavy Rainfall Disaster in the Kanto and Tohoku Area, Japan</title><title>Journal of The Remote Sensing Society of Japan</title><addtitle>Journal of The Remote Sensing Society of Japan</addtitle><description>Rapid and all-weather detection of flood area is needed for monitoring and mitigating flood disasters. This paper addressed flood area detection by using ALOS-2 PALSAR-2 data acquired during the 2015 heavy rainfall disaster in Kanto and Tohoku area, Japan. We propose an approach to detect flood area by thresholding of amplitude image and interferometric coherence image for non-urban area and urban area, respectively. The PALSAR-2-derived flood areas are validated using the inundation map provided by the Geospatial Information Authority of Japan (GSI) and showed 75% accuracy and 0.51 kappa coefficient in flood/non-flood discrimination. Effectiveness of lower incidence angle (less than 40 degrees) and a high sensitive observation mode (6m resolution mode) for detecting non-urban flood are also demonstrated by a comparative study. Interferometric phase variation was revealed to be effective for detecting urban-area flood compared to conventional interferometric coherence. The results demonstrated the feasibility of PALSAR-2 for rapid flood monitoring and can be used as a reference for possible future flood disasters.</description><subject>ALOS-2 PALSAR-2</subject><subject>Coherence</subject><subject>Comparative analysis</subject><subject>Comparative studies</subject><subject>Data acquisition</subject><subject>Detection</subject><subject>Disaster management</subject><subject>disaster monitoring</subject><subject>Disasters</subject><subject>Feasibility studies</subject><subject>Flood control</subject><subject>Flood mapping</subject><subject>flooding</subject><subject>Floods</subject><subject>Hydrologic data</subject><subject>Image detection</subject><subject>Incidence angle</subject><subject>Interferometry</subject><subject>Monitoring</subject><subject>Rain</subject><subject>Rainfall</subject><subject>synthetic aperture radar</subject><subject>Urban areas</subject><subject>Weather</subject><issn>0289-7911</issn><issn>1883-1184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtP4zAUhS3ESFTAbn6ApdlOOn4ltpcR5TFQCURhHd24NzSdYGdsF8G_JxTE6p4jfece6RDyk7M550qxPzGl7Vza-UrJAzLjxsiCc6MOyYwJYwttOT8ipyn1LWNCGamVnJHXiyGENa0jAl1gRpf74Olj6v0TrZe3q0LQu3q5qu8nsYAMtAuR5g1SwXhJrxBe3ug99L6DYaCLPkHKGGnv98wN-Bwo-DV9CJvwb7ev-U2vYQR_Qn5MmYSnX_eYPF6cP5xdFcvby79n9bLYCmNUodcGWy2QtRVvbYeubLtqrUvZ8Urx0k1ed7Zt0QEyw1rhmASudWWd05yV8pj8-vw7xvB_hyk327CLfqpshLRaqKq0aqIuP6ltyvCEzRj7Z4hvDcTcuwGbj20baZvVbhwHfEaf907Jb8JtIDbo5TtpuHeC</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>OHKI, Masato</creator><creator>WATANABE, Manabu</creator><creator>NATSUAKI, Ryo</creator><creator>MOTOHKA, Takeshi</creator><creator>NAGAI, Hiroto</creator><creator>TADONO, Takeo</creator><creator>SUZUKI, Shinichi</creator><creator>ISHII, Keiko</creator><creator>ITOH, Takuya</creator><creator>YAMANOKUCHI, Tsutomu</creator><creator>SHIMADA, Masanobu</creator><general>The Remote Sensing Society of Japan</general><general>Japan Science and Technology Agency</general><scope>7SP</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>2019</creationdate><title>Flood Area Detection Using ALOS-2 PALSAR-2 Data for the 2015 Heavy Rainfall Disaster in the Kanto and Tohoku Area, Japan</title><author>OHKI, Masato ; WATANABE, Manabu ; NATSUAKI, Ryo ; MOTOHKA, Takeshi ; NAGAI, Hiroto ; TADONO, Takeo ; SUZUKI, Shinichi ; ISHII, Keiko ; ITOH, Takuya ; YAMANOKUCHI, Tsutomu ; SHIMADA, Masanobu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2884-7d8eb72e0b61b9fec5bf6d753f16415cc5b7f9bbecae080b2c03a17769cc71053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ALOS-2 PALSAR-2</topic><topic>Coherence</topic><topic>Comparative analysis</topic><topic>Comparative studies</topic><topic>Data acquisition</topic><topic>Detection</topic><topic>Disaster management</topic><topic>disaster monitoring</topic><topic>Disasters</topic><topic>Feasibility studies</topic><topic>Flood control</topic><topic>Flood mapping</topic><topic>flooding</topic><topic>Floods</topic><topic>Hydrologic data</topic><topic>Image detection</topic><topic>Incidence angle</topic><topic>Interferometry</topic><topic>Monitoring</topic><topic>Rain</topic><topic>Rainfall</topic><topic>synthetic aperture radar</topic><topic>Urban areas</topic><topic>Weather</topic><toplevel>online_resources</toplevel><creatorcontrib>OHKI, Masato</creatorcontrib><creatorcontrib>WATANABE, Manabu</creatorcontrib><creatorcontrib>NATSUAKI, Ryo</creatorcontrib><creatorcontrib>MOTOHKA, Takeshi</creatorcontrib><creatorcontrib>NAGAI, Hiroto</creatorcontrib><creatorcontrib>TADONO, Takeo</creatorcontrib><creatorcontrib>SUZUKI, Shinichi</creatorcontrib><creatorcontrib>ISHII, Keiko</creatorcontrib><creatorcontrib>ITOH, Takuya</creatorcontrib><creatorcontrib>YAMANOKUCHI, Tsutomu</creatorcontrib><creatorcontrib>SHIMADA, Masanobu</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of The Remote Sensing Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OHKI, Masato</au><au>WATANABE, Manabu</au><au>NATSUAKI, Ryo</au><au>MOTOHKA, Takeshi</au><au>NAGAI, Hiroto</au><au>TADONO, Takeo</au><au>SUZUKI, Shinichi</au><au>ISHII, Keiko</au><au>ITOH, Takuya</au><au>YAMANOKUCHI, Tsutomu</au><au>SHIMADA, Masanobu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flood Area Detection Using ALOS-2 PALSAR-2 Data for the 2015 Heavy Rainfall Disaster in the Kanto and Tohoku Area, Japan</atitle><jtitle>Journal of The Remote Sensing Society of Japan</jtitle><addtitle>Journal of The Remote Sensing Society of Japan</addtitle><date>2019</date><risdate>2019</risdate><volume>39</volume><issue>Supplement</issue><spage>S43</spage><epage>S55</epage><pages>S43-S55</pages><issn>0289-7911</issn><eissn>1883-1184</eissn><abstract>Rapid and all-weather detection of flood area is needed for monitoring and mitigating flood disasters. This paper addressed flood area detection by using ALOS-2 PALSAR-2 data acquired during the 2015 heavy rainfall disaster in Kanto and Tohoku area, Japan. We propose an approach to detect flood area by thresholding of amplitude image and interferometric coherence image for non-urban area and urban area, respectively. The PALSAR-2-derived flood areas are validated using the inundation map provided by the Geospatial Information Authority of Japan (GSI) and showed 75% accuracy and 0.51 kappa coefficient in flood/non-flood discrimination. Effectiveness of lower incidence angle (less than 40 degrees) and a high sensitive observation mode (6m resolution mode) for detecting non-urban flood are also demonstrated by a comparative study. Interferometric phase variation was revealed to be effective for detecting urban-area flood compared to conventional interferometric coherence. The results demonstrated the feasibility of PALSAR-2 for rapid flood monitoring and can be used as a reference for possible future flood disasters.</abstract><cop>Tokyo</cop><pub>The Remote Sensing Society of Japan</pub><doi>10.11440/rssj.39.S43</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0289-7911 |
ispartof | Journal of The Remote Sensing Society of Japan, 2019, Vol.39(Supplement), pp.S43-S55 |
issn | 0289-7911 1883-1184 |
language | eng |
recordid | cdi_proquest_journals_2397246594 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; AgriKnowledge(アグリナレッジ)AGROLib |
subjects | ALOS-2 PALSAR-2 Coherence Comparative analysis Comparative studies Data acquisition Detection Disaster management disaster monitoring Disasters Feasibility studies Flood control Flood mapping flooding Floods Hydrologic data Image detection Incidence angle Interferometry Monitoring Rain Rainfall synthetic aperture radar Urban areas Weather |
title | Flood Area Detection Using ALOS-2 PALSAR-2 Data for the 2015 Heavy Rainfall Disaster in the Kanto and Tohoku Area, Japan |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_jstag&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flood%20Area%20Detection%20Using%20ALOS-2%20PALSAR-2%20Data%20for%20the%202015%20Heavy%20Rainfall%20Disaster%20in%20the%20Kanto%20and%20Tohoku%20Area,%20Japan&rft.jtitle=Journal%20of%20The%20Remote%20Sensing%20Society%20of%20Japan&rft.au=OHKI,%20Masato&rft.date=2019&rft.volume=39&rft.issue=Supplement&rft.spage=S43&rft.epage=S55&rft.pages=S43-S55&rft.issn=0289-7911&rft.eissn=1883-1184&rft_id=info:doi/10.11440/rssj.39.S43&rft_dat=%3Cproquest_jstag%3E2397246594%3C/proquest_jstag%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397246594&rft_id=info:pmid/&rfr_iscdi=true |