Linear and Nonlinear Stability Analysis in Microfluidic Systems

In this article we use analytical and numerical modeling to describe parallel viscous two-phase flows in microchannels. The focus is on idealized two-dimensional geometries, with a view to validating the various methodologies for future work in three dimensions. In the first instance, we use analyti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid dynamics & materials processing 2020, Vol.16 (2), p.383-410
Hauptverfasser: N醨aigh, Lennon, R. Jansen van Vuuren, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue 2
container_start_page 383
container_title Fluid dynamics & materials processing
container_volume 16
creator N醨aigh, Lennon
R. Jansen van Vuuren, Daniel
description In this article we use analytical and numerical modeling to describe parallel viscous two-phase flows in microchannels. The focus is on idealized two-dimensional geometries, with a view to validating the various methodologies for future work in three dimensions. In the first instance, we use analytical Orr-Sommerfeld theory to describe the linear instability which governs the formation of small-amplitude waves in such systems. We then compare the results of this analysis with an in-house Computational Fluid Dynamics (CFD) solver called TPLS. Excellent agreement between the theoretical analysis and TPLS is obtained in the regime of small-amplitude waves. We continue the numerical simulations beyond the point of validity of the Orr-Sommerfeld theory. In this way, we illustrate the generation of nonlinear interfacial waves and reverse entrainment of one fluid phase into the other. We justify our simulations further by comparing the numerical results with corresponding results from a commercial CFD code. This comparison is again extremely favourable—this rigorous validation paves the way for future work using TPLS or commercial codes to perform extremely detailed three-dimensional simulations of flow in microchannels.
doi_str_mv 10.32604/fdmp.2020.09265
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2397155100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2397155100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-51edfd6f86b7cdee71b1f29f78601a8f7c5caabebfc1685145a2bbddb578286e3</originalsourceid><addsrcrecordid>eNpNkEtLxDAURoMoOFb3LguuW_NoknYlw6CjUHUxug55Qoa-TNpF_72dqQtX9174uJzvAHCPYE4wg8WjM-2QY4hhDivM6AXYIEpphikvL__t1-AmxiOEhFe02ICn2ndWhlR2Jv3ou2a9DqNUvvHjnG472czRx9R36bvXoXfN5I3X6WGOo23jLbhyson27m8m4Pvl-Wv3mtWf-7fdts40QWTMKLLGGeZKprg21nKkkMOV4yWDSJaOa6qlVFY5jVhJUUElVsoYtRDjklmSgIf17xD6n8nGURz7KSxwUWBS8aUeWjolAK6pBTTGYJ0Ygm9lmAWC4qxJnDSJkyZx1kR-AaXEXFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397155100</pqid></control><display><type>article</type><title>Linear and Nonlinear Stability Analysis in Microfluidic Systems</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>N醨aigh, Lennon ; R. Jansen van Vuuren, Daniel</creator><creatorcontrib>N醨aigh, Lennon ; R. Jansen van Vuuren, Daniel</creatorcontrib><description>In this article we use analytical and numerical modeling to describe parallel viscous two-phase flows in microchannels. The focus is on idealized two-dimensional geometries, with a view to validating the various methodologies for future work in three dimensions. In the first instance, we use analytical Orr-Sommerfeld theory to describe the linear instability which governs the formation of small-amplitude waves in such systems. We then compare the results of this analysis with an in-house Computational Fluid Dynamics (CFD) solver called TPLS. Excellent agreement between the theoretical analysis and TPLS is obtained in the regime of small-amplitude waves. We continue the numerical simulations beyond the point of validity of the Orr-Sommerfeld theory. In this way, we illustrate the generation of nonlinear interfacial waves and reverse entrainment of one fluid phase into the other. We justify our simulations further by comparing the numerical results with corresponding results from a commercial CFD code. This comparison is again extremely favourable—this rigorous validation paves the way for future work using TPLS or commercial codes to perform extremely detailed three-dimensional simulations of flow in microchannels.</description><identifier>ISSN: 1555-2578</identifier><identifier>ISSN: 1555-256X</identifier><identifier>EISSN: 1555-2578</identifier><identifier>DOI: 10.32604/fdmp.2020.09265</identifier><language>eng</language><publisher>Duluth: Tech Science Press</publisher><subject>Amplitudes ; Computational fluid dynamics ; Computer simulation ; Entrainment ; Mathematical models ; Microchannels ; Microfluidics ; Nonlinear analysis ; Simulation ; Stability analysis ; Three dimensional flow ; Two phase flow</subject><ispartof>Fluid dynamics &amp; materials processing, 2020, Vol.16 (2), p.383-410</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-51edfd6f86b7cdee71b1f29f78601a8f7c5caabebfc1685145a2bbddb578286e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>N醨aigh, Lennon</creatorcontrib><creatorcontrib>R. Jansen van Vuuren, Daniel</creatorcontrib><title>Linear and Nonlinear Stability Analysis in Microfluidic Systems</title><title>Fluid dynamics &amp; materials processing</title><description>In this article we use analytical and numerical modeling to describe parallel viscous two-phase flows in microchannels. The focus is on idealized two-dimensional geometries, with a view to validating the various methodologies for future work in three dimensions. In the first instance, we use analytical Orr-Sommerfeld theory to describe the linear instability which governs the formation of small-amplitude waves in such systems. We then compare the results of this analysis with an in-house Computational Fluid Dynamics (CFD) solver called TPLS. Excellent agreement between the theoretical analysis and TPLS is obtained in the regime of small-amplitude waves. We continue the numerical simulations beyond the point of validity of the Orr-Sommerfeld theory. In this way, we illustrate the generation of nonlinear interfacial waves and reverse entrainment of one fluid phase into the other. We justify our simulations further by comparing the numerical results with corresponding results from a commercial CFD code. This comparison is again extremely favourable—this rigorous validation paves the way for future work using TPLS or commercial codes to perform extremely detailed three-dimensional simulations of flow in microchannels.</description><subject>Amplitudes</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Entrainment</subject><subject>Mathematical models</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Nonlinear analysis</subject><subject>Simulation</subject><subject>Stability analysis</subject><subject>Three dimensional flow</subject><subject>Two phase flow</subject><issn>1555-2578</issn><issn>1555-256X</issn><issn>1555-2578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkEtLxDAURoMoOFb3LguuW_NoknYlw6CjUHUxug55Qoa-TNpF_72dqQtX9174uJzvAHCPYE4wg8WjM-2QY4hhDivM6AXYIEpphikvL__t1-AmxiOEhFe02ICn2ndWhlR2Jv3ou2a9DqNUvvHjnG472czRx9R36bvXoXfN5I3X6WGOo23jLbhyson27m8m4Pvl-Wv3mtWf-7fdts40QWTMKLLGGeZKprg21nKkkMOV4yWDSJaOa6qlVFY5jVhJUUElVsoYtRDjklmSgIf17xD6n8nGURz7KSxwUWBS8aUeWjolAK6pBTTGYJ0Ygm9lmAWC4qxJnDSJkyZx1kR-AaXEXFg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>N醨aigh, Lennon</creator><creator>R. Jansen van Vuuren, Daniel</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2020</creationdate><title>Linear and Nonlinear Stability Analysis in Microfluidic Systems</title><author>N醨aigh, Lennon ; R. Jansen van Vuuren, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-51edfd6f86b7cdee71b1f29f78601a8f7c5caabebfc1685145a2bbddb578286e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Entrainment</topic><topic>Mathematical models</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Nonlinear analysis</topic><topic>Simulation</topic><topic>Stability analysis</topic><topic>Three dimensional flow</topic><topic>Two phase flow</topic><toplevel>online_resources</toplevel><creatorcontrib>N醨aigh, Lennon</creatorcontrib><creatorcontrib>R. Jansen van Vuuren, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Fluid dynamics &amp; materials processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>N醨aigh, Lennon</au><au>R. Jansen van Vuuren, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear and Nonlinear Stability Analysis in Microfluidic Systems</atitle><jtitle>Fluid dynamics &amp; materials processing</jtitle><date>2020</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>383</spage><epage>410</epage><pages>383-410</pages><issn>1555-2578</issn><issn>1555-256X</issn><eissn>1555-2578</eissn><abstract>In this article we use analytical and numerical modeling to describe parallel viscous two-phase flows in microchannels. The focus is on idealized two-dimensional geometries, with a view to validating the various methodologies for future work in three dimensions. In the first instance, we use analytical Orr-Sommerfeld theory to describe the linear instability which governs the formation of small-amplitude waves in such systems. We then compare the results of this analysis with an in-house Computational Fluid Dynamics (CFD) solver called TPLS. Excellent agreement between the theoretical analysis and TPLS is obtained in the regime of small-amplitude waves. We continue the numerical simulations beyond the point of validity of the Orr-Sommerfeld theory. In this way, we illustrate the generation of nonlinear interfacial waves and reverse entrainment of one fluid phase into the other. We justify our simulations further by comparing the numerical results with corresponding results from a commercial CFD code. This comparison is again extremely favourable—this rigorous validation paves the way for future work using TPLS or commercial codes to perform extremely detailed three-dimensional simulations of flow in microchannels.</abstract><cop>Duluth</cop><pub>Tech Science Press</pub><doi>10.32604/fdmp.2020.09265</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1555-2578
ispartof Fluid dynamics & materials processing, 2020, Vol.16 (2), p.383-410
issn 1555-2578
1555-256X
1555-2578
language eng
recordid cdi_proquest_journals_2397155100
source EZB-FREE-00999 freely available EZB journals
subjects Amplitudes
Computational fluid dynamics
Computer simulation
Entrainment
Mathematical models
Microchannels
Microfluidics
Nonlinear analysis
Simulation
Stability analysis
Three dimensional flow
Two phase flow
title Linear and Nonlinear Stability Analysis in Microfluidic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20and%20Nonlinear%20Stability%20Analysis%20in%20Microfluidic%20Systems&rft.jtitle=Fluid%20dynamics%20&%20materials%20processing&rft.au=N%E9%86%A8aigh,%20Lennon&rft.date=2020&rft.volume=16&rft.issue=2&rft.spage=383&rft.epage=410&rft.pages=383-410&rft.issn=1555-2578&rft.eissn=1555-2578&rft_id=info:doi/10.32604/fdmp.2020.09265&rft_dat=%3Cproquest_cross%3E2397155100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397155100&rft_id=info:pmid/&rfr_iscdi=true