Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings

This study presents an analytical solution for the nonlinear forced vibration response of bridged carbon nanotube (CNT)-based mass sensors subjected to different types of thermal loading and external harmonic excitations. The structure undergoes a temperature change through its thickness when consid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2020-04, Vol.100 (2), p.1013-1035
Hauptverfasser: Ghaffari, S. S., Ceballes, S., Abdelkefi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1035
container_issue 2
container_start_page 1013
container_title Nonlinear dynamics
container_volume 100
creator Ghaffari, S. S.
Ceballes, S.
Abdelkefi, A.
description This study presents an analytical solution for the nonlinear forced vibration response of bridged carbon nanotube (CNT)-based mass sensors subjected to different types of thermal loading and external harmonic excitations. The structure undergoes a temperature change through its thickness when considering three different distribution patterns of the temperature, namely uniform, linear, and nonlinear. The CNT is modeled as a nonlocal doubly clamped beam that complies with Euler–Bernoulli beam theory and Eringen’s nonlocal elasticity theory. The von Kármán geometric nonlinearity is adopted to account for the mid-plane stretching of end-constrained beams. The extended Hamilton’s principle is used to derive the nonlinear governing equations of motion, boundary conditions, and continuity conditions accounting for the location of the deposited particle. The method of multiple scales (MMS) is employed to perform the nonlinear dynamical analysis of the nanobeam. Analytical expressions of the nonlinear dynamic response of the system exposed to thermal loadings in the case of primary resonance are presented. An important contribution of this work is the provision for closed-form expressions of the resonance frequency and the critical amplitude of the considered system. Simultaneously, validation of the results by MMS is achieved by Galerkin’s procedure and Runge–Kutta method. Then, the effects of the thermal loads and some key parameters on the nonlinear resonance frequency and amplitude shifts are discussed, and some meaningful conclusions are drawn.
doi_str_mv 10.1007/s11071-020-05565-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2396098771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396098771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-a8670d68aeb12b42f81957d3535bf4530b6c10847ceea7e2bd7d31225e26c16b3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWB9fwFPAc3SSNJvdo4gvEL0o9BaS3dm6ZZvUTPfQb2-0gjdPA__XwI-xCwlXEsBek5RgpQAFAoypjNgdsJk0VgtVNYtDNoNGzQU0sDhmJ0QrANAK6hnLLymOQ0SfebeLfj20fuQZaZMiIfHU8z7lFjve-hxS5NHHtJ0CiuCpqGtPxAkjpUx8ih1mvv1APsR-nDC2-D1QhLwuq2Py3RCXdMaOej8Snv_eU_Z-f_d2-yieXx-ebm-eRatrsxW-rix0Ve0xSBXmqq9lY2ynjTahnxsNoWol1HPbInqLKnTFlEoZVMWogj5ll_vdTU6fE9LWrdKUY3nplG4qaGprZUmpfarNiShj7zZ5WPu8cxLcN1u3Z-sKW_fD1u1KSe9LVMJxiflv-p_WF1vYfwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396098771</pqid></control><display><type>article</type><title>Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ghaffari, S. S. ; Ceballes, S. ; Abdelkefi, A.</creator><creatorcontrib>Ghaffari, S. S. ; Ceballes, S. ; Abdelkefi, A.</creatorcontrib><description>This study presents an analytical solution for the nonlinear forced vibration response of bridged carbon nanotube (CNT)-based mass sensors subjected to different types of thermal loading and external harmonic excitations. The structure undergoes a temperature change through its thickness when considering three different distribution patterns of the temperature, namely uniform, linear, and nonlinear. The CNT is modeled as a nonlocal doubly clamped beam that complies with Euler–Bernoulli beam theory and Eringen’s nonlocal elasticity theory. The von Kármán geometric nonlinearity is adopted to account for the mid-plane stretching of end-constrained beams. The extended Hamilton’s principle is used to derive the nonlinear governing equations of motion, boundary conditions, and continuity conditions accounting for the location of the deposited particle. The method of multiple scales (MMS) is employed to perform the nonlinear dynamical analysis of the nanobeam. Analytical expressions of the nonlinear dynamic response of the system exposed to thermal loadings in the case of primary resonance are presented. An important contribution of this work is the provision for closed-form expressions of the resonance frequency and the critical amplitude of the considered system. Simultaneously, validation of the results by MMS is achieved by Galerkin’s procedure and Runge–Kutta method. Then, the effects of the thermal loads and some key parameters on the nonlinear resonance frequency and amplitude shifts are discussed, and some meaningful conclusions are drawn.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-020-05565-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amplitudes ; Automotive Engineering ; Beam theory (structures) ; Boundary conditions ; Carbon nanotubes ; Classical Mechanics ; Control ; Dynamic response ; Dynamical Systems ; Engineering ; Equations of motion ; Euler-Bernoulli beams ; Exact solutions ; Forced vibration ; Galerkin method ; Geometric nonlinearity ; Mechanical Engineering ; Multiscale analysis ; Nonlinear analysis ; Nonlinear dynamics ; Nonlinear equations ; Nonlinear response ; Nonlocal elasticity ; Original Paper ; Resonance ; Runge-Kutta method ; Sensors ; Thermal analysis ; Vibration</subject><ispartof>Nonlinear dynamics, 2020-04, Vol.100 (2), p.1013-1035</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-a8670d68aeb12b42f81957d3535bf4530b6c10847ceea7e2bd7d31225e26c16b3</citedby><cites>FETCH-LOGICAL-c385t-a8670d68aeb12b42f81957d3535bf4530b6c10847ceea7e2bd7d31225e26c16b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-020-05565-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-020-05565-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ghaffari, S. S.</creatorcontrib><creatorcontrib>Ceballes, S.</creatorcontrib><creatorcontrib>Abdelkefi, A.</creatorcontrib><title>Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This study presents an analytical solution for the nonlinear forced vibration response of bridged carbon nanotube (CNT)-based mass sensors subjected to different types of thermal loading and external harmonic excitations. The structure undergoes a temperature change through its thickness when considering three different distribution patterns of the temperature, namely uniform, linear, and nonlinear. The CNT is modeled as a nonlocal doubly clamped beam that complies with Euler–Bernoulli beam theory and Eringen’s nonlocal elasticity theory. The von Kármán geometric nonlinearity is adopted to account for the mid-plane stretching of end-constrained beams. The extended Hamilton’s principle is used to derive the nonlinear governing equations of motion, boundary conditions, and continuity conditions accounting for the location of the deposited particle. The method of multiple scales (MMS) is employed to perform the nonlinear dynamical analysis of the nanobeam. Analytical expressions of the nonlinear dynamic response of the system exposed to thermal loadings in the case of primary resonance are presented. An important contribution of this work is the provision for closed-form expressions of the resonance frequency and the critical amplitude of the considered system. Simultaneously, validation of the results by MMS is achieved by Galerkin’s procedure and Runge–Kutta method. Then, the effects of the thermal loads and some key parameters on the nonlinear resonance frequency and amplitude shifts are discussed, and some meaningful conclusions are drawn.</description><subject>Amplitudes</subject><subject>Automotive Engineering</subject><subject>Beam theory (structures)</subject><subject>Boundary conditions</subject><subject>Carbon nanotubes</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamic response</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Euler-Bernoulli beams</subject><subject>Exact solutions</subject><subject>Forced vibration</subject><subject>Galerkin method</subject><subject>Geometric nonlinearity</subject><subject>Mechanical Engineering</subject><subject>Multiscale analysis</subject><subject>Nonlinear analysis</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear equations</subject><subject>Nonlinear response</subject><subject>Nonlocal elasticity</subject><subject>Original Paper</subject><subject>Resonance</subject><subject>Runge-Kutta method</subject><subject>Sensors</subject><subject>Thermal analysis</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEQx4MoWB9fwFPAc3SSNJvdo4gvEL0o9BaS3dm6ZZvUTPfQb2-0gjdPA__XwI-xCwlXEsBek5RgpQAFAoypjNgdsJk0VgtVNYtDNoNGzQU0sDhmJ0QrANAK6hnLLymOQ0SfebeLfj20fuQZaZMiIfHU8z7lFjve-hxS5NHHtJ0CiuCpqGtPxAkjpUx8ih1mvv1APsR-nDC2-D1QhLwuq2Py3RCXdMaOej8Snv_eU_Z-f_d2-yieXx-ebm-eRatrsxW-rix0Ve0xSBXmqq9lY2ynjTahnxsNoWol1HPbInqLKnTFlEoZVMWogj5ll_vdTU6fE9LWrdKUY3nplG4qaGprZUmpfarNiShj7zZ5WPu8cxLcN1u3Z-sKW_fD1u1KSe9LVMJxiflv-p_WF1vYfwg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Ghaffari, S. S.</creator><creator>Ceballes, S.</creator><creator>Abdelkefi, A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200401</creationdate><title>Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings</title><author>Ghaffari, S. S. ; Ceballes, S. ; Abdelkefi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-a8670d68aeb12b42f81957d3535bf4530b6c10847ceea7e2bd7d31225e26c16b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Automotive Engineering</topic><topic>Beam theory (structures)</topic><topic>Boundary conditions</topic><topic>Carbon nanotubes</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamic response</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Euler-Bernoulli beams</topic><topic>Exact solutions</topic><topic>Forced vibration</topic><topic>Galerkin method</topic><topic>Geometric nonlinearity</topic><topic>Mechanical Engineering</topic><topic>Multiscale analysis</topic><topic>Nonlinear analysis</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear equations</topic><topic>Nonlinear response</topic><topic>Nonlocal elasticity</topic><topic>Original Paper</topic><topic>Resonance</topic><topic>Runge-Kutta method</topic><topic>Sensors</topic><topic>Thermal analysis</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghaffari, S. S.</creatorcontrib><creatorcontrib>Ceballes, S.</creatorcontrib><creatorcontrib>Abdelkefi, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaffari, S. S.</au><au>Ceballes, S.</au><au>Abdelkefi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>100</volume><issue>2</issue><spage>1013</spage><epage>1035</epage><pages>1013-1035</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This study presents an analytical solution for the nonlinear forced vibration response of bridged carbon nanotube (CNT)-based mass sensors subjected to different types of thermal loading and external harmonic excitations. The structure undergoes a temperature change through its thickness when considering three different distribution patterns of the temperature, namely uniform, linear, and nonlinear. The CNT is modeled as a nonlocal doubly clamped beam that complies with Euler–Bernoulli beam theory and Eringen’s nonlocal elasticity theory. The von Kármán geometric nonlinearity is adopted to account for the mid-plane stretching of end-constrained beams. The extended Hamilton’s principle is used to derive the nonlinear governing equations of motion, boundary conditions, and continuity conditions accounting for the location of the deposited particle. The method of multiple scales (MMS) is employed to perform the nonlinear dynamical analysis of the nanobeam. Analytical expressions of the nonlinear dynamic response of the system exposed to thermal loadings in the case of primary resonance are presented. An important contribution of this work is the provision for closed-form expressions of the resonance frequency and the critical amplitude of the considered system. Simultaneously, validation of the results by MMS is achieved by Galerkin’s procedure and Runge–Kutta method. Then, the effects of the thermal loads and some key parameters on the nonlinear resonance frequency and amplitude shifts are discussed, and some meaningful conclusions are drawn.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-020-05565-y</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2020-04, Vol.100 (2), p.1013-1035
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2396098771
source SpringerLink Journals - AutoHoldings
subjects Amplitudes
Automotive Engineering
Beam theory (structures)
Boundary conditions
Carbon nanotubes
Classical Mechanics
Control
Dynamic response
Dynamical Systems
Engineering
Equations of motion
Euler-Bernoulli beams
Exact solutions
Forced vibration
Galerkin method
Geometric nonlinearity
Mechanical Engineering
Multiscale analysis
Nonlinear analysis
Nonlinear dynamics
Nonlinear equations
Nonlinear response
Nonlocal elasticity
Original Paper
Resonance
Runge-Kutta method
Sensors
Thermal analysis
Vibration
title Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamical%20responses%20of%20forced%20carbon%20nanotube-based%20mass%20sensors%20under%20the%20influence%20of%20thermal%20loadings&rft.jtitle=Nonlinear%20dynamics&rft.au=Ghaffari,%20S.%20S.&rft.date=2020-04-01&rft.volume=100&rft.issue=2&rft.spage=1013&rft.epage=1035&rft.pages=1013-1035&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-020-05565-y&rft_dat=%3Cproquest_cross%3E2396098771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396098771&rft_id=info:pmid/&rfr_iscdi=true