Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam

This paper concerns an investigation into the control of the transient vibration of an Euler–Bernoulli beam using a symmetric single-sided vibro-impact nonlinear energy sink (SSSVI NES). The non-dimensional system of equations is derived by using the Galerkin method. Consideration and theoretical an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2020-04, Vol.100 (2), p.951-971
Hauptverfasser: Li, Wenke, Wierschem, Nicholas E., Li, Xinhui, Yang, Tiejun, Brennan, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 971
container_issue 2
container_start_page 951
container_title Nonlinear dynamics
container_volume 100
creator Li, Wenke
Wierschem, Nicholas E.
Li, Xinhui
Yang, Tiejun
Brennan, Michael J.
description This paper concerns an investigation into the control of the transient vibration of an Euler–Bernoulli beam using a symmetric single-sided vibro-impact nonlinear energy sink (SSSVI NES). The non-dimensional system of equations is derived by using the Galerkin method. Consideration and theoretical analysis of the impact dynamics of the device is carried out by introducing the impact modes. This analysis shows that the proposed SSSVI NES has increased complexity in its modes of energy dissipation compared with the single-sided vibro-impact NES (SSVI NES). Simulations are conducted with a wide variety of impulse loads to determine the optimum parameters of the SSSVI NES. The beam vibration suppression performance of the optimized SSSVI NES is then compared with both the SSVI NES and the case in which the NES is locked. When these devices have the same total mass, the SSSVI NES has superior vibration suppression performance, especially when the damping in the control device is light. The vibration suppression performance of the SSSVI NES is investigated when its location along the beam is varied. The effect of the clearance between the NES masses and the impact surface on the vibration suppression performance of the SSSVI NES is also investigated, as well as the device’s damping and the coefficient of restitution. Finally, the efficacy of the SSSVI NES device for seismic loads is investigated. The numerical results of this analysis show that the optimized SSSVI NES can effectively reduce the energy in the system and suppress the maximum bending moment and shear stress of the host cantilever beam.
doi_str_mv 10.1007/s11071-020-05571-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2396097406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396097406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-63041bc1dc2ece303a5efd26db7807026530b8e4b4ea7acb5e94932c0ae411953</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz9FJ0o_NURa_QPSisLeQptMla5vUpBX25k-3awVvnmYYnvcdeAi54HDFAcrrxDmUnIEABnm-3w7IguelZKJQ60OyACUyBgrWx-QkpS0ASAHLBfl6HjuMzpqWpmGsdzQ01NC06zocpjNNzm9aZMnVWNNPV8XAXNcbO1AffOs8mkjRY9zs9ug7bUKk0fSuphFTH3zCaalHO7jg525r_OBa_MRIKzTdGTlqTJvw_Heekre729fVA3t6uX9c3TwxK7kaWCEh45XltRVoUYI0OTa1KOqqXEIJosglVEvMqgxNaWyVo8qUFBYMZpyrXJ6Sy7m3j-FjxDTobRijn15qIVUBqsygmCgxUzaGlCI2uo-uM3GnOei9aT2b1pNp_WNawxSScyhNsN9g_Kv-J_UNFU-DbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396097406</pqid></control><display><type>article</type><title>Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam</title><source>SpringerLink Journals</source><creator>Li, Wenke ; Wierschem, Nicholas E. ; Li, Xinhui ; Yang, Tiejun ; Brennan, Michael J.</creator><creatorcontrib>Li, Wenke ; Wierschem, Nicholas E. ; Li, Xinhui ; Yang, Tiejun ; Brennan, Michael J.</creatorcontrib><description>This paper concerns an investigation into the control of the transient vibration of an Euler–Bernoulli beam using a symmetric single-sided vibro-impact nonlinear energy sink (SSSVI NES). The non-dimensional system of equations is derived by using the Galerkin method. Consideration and theoretical analysis of the impact dynamics of the device is carried out by introducing the impact modes. This analysis shows that the proposed SSSVI NES has increased complexity in its modes of energy dissipation compared with the single-sided vibro-impact NES (SSVI NES). Simulations are conducted with a wide variety of impulse loads to determine the optimum parameters of the SSSVI NES. The beam vibration suppression performance of the optimized SSSVI NES is then compared with both the SSVI NES and the case in which the NES is locked. When these devices have the same total mass, the SSSVI NES has superior vibration suppression performance, especially when the damping in the control device is light. The vibration suppression performance of the SSSVI NES is investigated when its location along the beam is varied. The effect of the clearance between the NES masses and the impact surface on the vibration suppression performance of the SSSVI NES is also investigated, as well as the device’s damping and the coefficient of restitution. Finally, the efficacy of the SSSVI NES device for seismic loads is investigated. The numerical results of this analysis show that the optimized SSSVI NES can effectively reduce the energy in the system and suppress the maximum bending moment and shear stress of the host cantilever beam.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-020-05571-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bending moments ; Cantilever beams ; Classical Mechanics ; Computer simulation ; Control ; Damping ; Dynamical Systems ; Earthquake loads ; Energy dissipation ; Engineering ; Euler-Bernoulli beams ; Galerkin method ; Impact analysis ; Impulse loading ; Investigations ; Maximum bending ; Mechanical Engineering ; Original Paper ; Shear stress ; Vibration ; Vibration control</subject><ispartof>Nonlinear dynamics, 2020-04, Vol.100 (2), p.951-971</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-63041bc1dc2ece303a5efd26db7807026530b8e4b4ea7acb5e94932c0ae411953</citedby><cites>FETCH-LOGICAL-c319t-63041bc1dc2ece303a5efd26db7807026530b8e4b4ea7acb5e94932c0ae411953</cites><orcidid>0000-0002-1069-1357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-020-05571-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-020-05571-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Wenke</creatorcontrib><creatorcontrib>Wierschem, Nicholas E.</creatorcontrib><creatorcontrib>Li, Xinhui</creatorcontrib><creatorcontrib>Yang, Tiejun</creatorcontrib><creatorcontrib>Brennan, Michael J.</creatorcontrib><title>Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper concerns an investigation into the control of the transient vibration of an Euler–Bernoulli beam using a symmetric single-sided vibro-impact nonlinear energy sink (SSSVI NES). The non-dimensional system of equations is derived by using the Galerkin method. Consideration and theoretical analysis of the impact dynamics of the device is carried out by introducing the impact modes. This analysis shows that the proposed SSSVI NES has increased complexity in its modes of energy dissipation compared with the single-sided vibro-impact NES (SSVI NES). Simulations are conducted with a wide variety of impulse loads to determine the optimum parameters of the SSSVI NES. The beam vibration suppression performance of the optimized SSSVI NES is then compared with both the SSVI NES and the case in which the NES is locked. When these devices have the same total mass, the SSSVI NES has superior vibration suppression performance, especially when the damping in the control device is light. The vibration suppression performance of the SSSVI NES is investigated when its location along the beam is varied. The effect of the clearance between the NES masses and the impact surface on the vibration suppression performance of the SSSVI NES is also investigated, as well as the device’s damping and the coefficient of restitution. Finally, the efficacy of the SSSVI NES device for seismic loads is investigated. The numerical results of this analysis show that the optimized SSSVI NES can effectively reduce the energy in the system and suppress the maximum bending moment and shear stress of the host cantilever beam.</description><subject>Automotive Engineering</subject><subject>Bending moments</subject><subject>Cantilever beams</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Damping</subject><subject>Dynamical Systems</subject><subject>Earthquake loads</subject><subject>Energy dissipation</subject><subject>Engineering</subject><subject>Euler-Bernoulli beams</subject><subject>Galerkin method</subject><subject>Impact analysis</subject><subject>Impulse loading</subject><subject>Investigations</subject><subject>Maximum bending</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Shear stress</subject><subject>Vibration</subject><subject>Vibration control</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouH78AU8Bz9FJ0o_NURa_QPSisLeQptMla5vUpBX25k-3awVvnmYYnvcdeAi54HDFAcrrxDmUnIEABnm-3w7IguelZKJQ60OyACUyBgrWx-QkpS0ASAHLBfl6HjuMzpqWpmGsdzQ01NC06zocpjNNzm9aZMnVWNNPV8XAXNcbO1AffOs8mkjRY9zs9ug7bUKk0fSuphFTH3zCaalHO7jg525r_OBa_MRIKzTdGTlqTJvw_Heekre729fVA3t6uX9c3TwxK7kaWCEh45XltRVoUYI0OTa1KOqqXEIJosglVEvMqgxNaWyVo8qUFBYMZpyrXJ6Sy7m3j-FjxDTobRijn15qIVUBqsygmCgxUzaGlCI2uo-uM3GnOei9aT2b1pNp_WNawxSScyhNsN9g_Kv-J_UNFU-DbQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Li, Wenke</creator><creator>Wierschem, Nicholas E.</creator><creator>Li, Xinhui</creator><creator>Yang, Tiejun</creator><creator>Brennan, Michael J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1069-1357</orcidid></search><sort><creationdate>20200401</creationdate><title>Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam</title><author>Li, Wenke ; Wierschem, Nicholas E. ; Li, Xinhui ; Yang, Tiejun ; Brennan, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-63041bc1dc2ece303a5efd26db7807026530b8e4b4ea7acb5e94932c0ae411953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Bending moments</topic><topic>Cantilever beams</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Damping</topic><topic>Dynamical Systems</topic><topic>Earthquake loads</topic><topic>Energy dissipation</topic><topic>Engineering</topic><topic>Euler-Bernoulli beams</topic><topic>Galerkin method</topic><topic>Impact analysis</topic><topic>Impulse loading</topic><topic>Investigations</topic><topic>Maximum bending</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Shear stress</topic><topic>Vibration</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenke</creatorcontrib><creatorcontrib>Wierschem, Nicholas E.</creatorcontrib><creatorcontrib>Li, Xinhui</creatorcontrib><creatorcontrib>Yang, Tiejun</creatorcontrib><creatorcontrib>Brennan, Michael J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenke</au><au>Wierschem, Nicholas E.</au><au>Li, Xinhui</au><au>Yang, Tiejun</au><au>Brennan, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>100</volume><issue>2</issue><spage>951</spage><epage>971</epage><pages>951-971</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper concerns an investigation into the control of the transient vibration of an Euler–Bernoulli beam using a symmetric single-sided vibro-impact nonlinear energy sink (SSSVI NES). The non-dimensional system of equations is derived by using the Galerkin method. Consideration and theoretical analysis of the impact dynamics of the device is carried out by introducing the impact modes. This analysis shows that the proposed SSSVI NES has increased complexity in its modes of energy dissipation compared with the single-sided vibro-impact NES (SSVI NES). Simulations are conducted with a wide variety of impulse loads to determine the optimum parameters of the SSSVI NES. The beam vibration suppression performance of the optimized SSSVI NES is then compared with both the SSVI NES and the case in which the NES is locked. When these devices have the same total mass, the SSSVI NES has superior vibration suppression performance, especially when the damping in the control device is light. The vibration suppression performance of the SSSVI NES is investigated when its location along the beam is varied. The effect of the clearance between the NES masses and the impact surface on the vibration suppression performance of the SSSVI NES is also investigated, as well as the device’s damping and the coefficient of restitution. Finally, the efficacy of the SSSVI NES device for seismic loads is investigated. The numerical results of this analysis show that the optimized SSSVI NES can effectively reduce the energy in the system and suppress the maximum bending moment and shear stress of the host cantilever beam.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-020-05571-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1069-1357</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2020-04, Vol.100 (2), p.951-971
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2396097406
source SpringerLink Journals
subjects Automotive Engineering
Bending moments
Cantilever beams
Classical Mechanics
Computer simulation
Control
Damping
Dynamical Systems
Earthquake loads
Energy dissipation
Engineering
Euler-Bernoulli beams
Galerkin method
Impact analysis
Impulse loading
Investigations
Maximum bending
Mechanical Engineering
Original Paper
Shear stress
Vibration
Vibration control
title Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20a%20symmetric%20single-sided%20vibro-impact%20nonlinear%20energy%20sink%20for%20rapid%20response%20reduction%20of%20a%20cantilever%20beam&rft.jtitle=Nonlinear%20dynamics&rft.au=Li,%20Wenke&rft.date=2020-04-01&rft.volume=100&rft.issue=2&rft.spage=951&rft.epage=971&rft.pages=951-971&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-020-05571-0&rft_dat=%3Cproquest_cross%3E2396097406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396097406&rft_id=info:pmid/&rfr_iscdi=true