Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam
This paper concerns an investigation into the control of the transient vibration of an Euler–Bernoulli beam using a symmetric single-sided vibro-impact nonlinear energy sink (SSSVI NES). The non-dimensional system of equations is derived by using the Galerkin method. Consideration and theoretical an...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2020-04, Vol.100 (2), p.951-971 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 971 |
---|---|
container_issue | 2 |
container_start_page | 951 |
container_title | Nonlinear dynamics |
container_volume | 100 |
creator | Li, Wenke Wierschem, Nicholas E. Li, Xinhui Yang, Tiejun Brennan, Michael J. |
description | This paper concerns an investigation into the control of the transient vibration of an Euler–Bernoulli beam using a symmetric single-sided vibro-impact nonlinear energy sink (SSSVI NES). The non-dimensional system of equations is derived by using the Galerkin method. Consideration and theoretical analysis of the impact dynamics of the device is carried out by introducing the impact modes. This analysis shows that the proposed SSSVI NES has increased complexity in its modes of energy dissipation compared with the single-sided vibro-impact NES (SSVI NES). Simulations are conducted with a wide variety of impulse loads to determine the optimum parameters of the SSSVI NES. The beam vibration suppression performance of the optimized SSSVI NES is then compared with both the SSVI NES and the case in which the NES is locked. When these devices have the same total mass, the SSSVI NES has superior vibration suppression performance, especially when the damping in the control device is light. The vibration suppression performance of the SSSVI NES is investigated when its location along the beam is varied. The effect of the clearance between the NES masses and the impact surface on the vibration suppression performance of the SSSVI NES is also investigated, as well as the device’s damping and the coefficient of restitution. Finally, the efficacy of the SSSVI NES device for seismic loads is investigated. The numerical results of this analysis show that the optimized SSSVI NES can effectively reduce the energy in the system and suppress the maximum bending moment and shear stress of the host cantilever beam. |
doi_str_mv | 10.1007/s11071-020-05571-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2396097406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396097406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-63041bc1dc2ece303a5efd26db7807026530b8e4b4ea7acb5e94932c0ae411953</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz9FJ0o_NURa_QPSisLeQptMla5vUpBX25k-3awVvnmYYnvcdeAi54HDFAcrrxDmUnIEABnm-3w7IguelZKJQ60OyACUyBgrWx-QkpS0ASAHLBfl6HjuMzpqWpmGsdzQ01NC06zocpjNNzm9aZMnVWNNPV8XAXNcbO1AffOs8mkjRY9zs9ug7bUKk0fSuphFTH3zCaalHO7jg525r_OBa_MRIKzTdGTlqTJvw_Heekre729fVA3t6uX9c3TwxK7kaWCEh45XltRVoUYI0OTa1KOqqXEIJosglVEvMqgxNaWyVo8qUFBYMZpyrXJ6Sy7m3j-FjxDTobRijn15qIVUBqsygmCgxUzaGlCI2uo-uM3GnOei9aT2b1pNp_WNawxSScyhNsN9g_Kv-J_UNFU-DbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396097406</pqid></control><display><type>article</type><title>Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam</title><source>SpringerLink Journals</source><creator>Li, Wenke ; Wierschem, Nicholas E. ; Li, Xinhui ; Yang, Tiejun ; Brennan, Michael J.</creator><creatorcontrib>Li, Wenke ; Wierschem, Nicholas E. ; Li, Xinhui ; Yang, Tiejun ; Brennan, Michael J.</creatorcontrib><description>This paper concerns an investigation into the control of the transient vibration of an Euler–Bernoulli beam using a symmetric single-sided vibro-impact nonlinear energy sink (SSSVI NES). The non-dimensional system of equations is derived by using the Galerkin method. Consideration and theoretical analysis of the impact dynamics of the device is carried out by introducing the impact modes. This analysis shows that the proposed SSSVI NES has increased complexity in its modes of energy dissipation compared with the single-sided vibro-impact NES (SSVI NES). Simulations are conducted with a wide variety of impulse loads to determine the optimum parameters of the SSSVI NES. The beam vibration suppression performance of the optimized SSSVI NES is then compared with both the SSVI NES and the case in which the NES is locked. When these devices have the same total mass, the SSSVI NES has superior vibration suppression performance, especially when the damping in the control device is light. The vibration suppression performance of the SSSVI NES is investigated when its location along the beam is varied. The effect of the clearance between the NES masses and the impact surface on the vibration suppression performance of the SSSVI NES is also investigated, as well as the device’s damping and the coefficient of restitution. Finally, the efficacy of the SSSVI NES device for seismic loads is investigated. The numerical results of this analysis show that the optimized SSSVI NES can effectively reduce the energy in the system and suppress the maximum bending moment and shear stress of the host cantilever beam.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-020-05571-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bending moments ; Cantilever beams ; Classical Mechanics ; Computer simulation ; Control ; Damping ; Dynamical Systems ; Earthquake loads ; Energy dissipation ; Engineering ; Euler-Bernoulli beams ; Galerkin method ; Impact analysis ; Impulse loading ; Investigations ; Maximum bending ; Mechanical Engineering ; Original Paper ; Shear stress ; Vibration ; Vibration control</subject><ispartof>Nonlinear dynamics, 2020-04, Vol.100 (2), p.951-971</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-63041bc1dc2ece303a5efd26db7807026530b8e4b4ea7acb5e94932c0ae411953</citedby><cites>FETCH-LOGICAL-c319t-63041bc1dc2ece303a5efd26db7807026530b8e4b4ea7acb5e94932c0ae411953</cites><orcidid>0000-0002-1069-1357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-020-05571-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-020-05571-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Wenke</creatorcontrib><creatorcontrib>Wierschem, Nicholas E.</creatorcontrib><creatorcontrib>Li, Xinhui</creatorcontrib><creatorcontrib>Yang, Tiejun</creatorcontrib><creatorcontrib>Brennan, Michael J.</creatorcontrib><title>Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper concerns an investigation into the control of the transient vibration of an Euler–Bernoulli beam using a symmetric single-sided vibro-impact nonlinear energy sink (SSSVI NES). The non-dimensional system of equations is derived by using the Galerkin method. Consideration and theoretical analysis of the impact dynamics of the device is carried out by introducing the impact modes. This analysis shows that the proposed SSSVI NES has increased complexity in its modes of energy dissipation compared with the single-sided vibro-impact NES (SSVI NES). Simulations are conducted with a wide variety of impulse loads to determine the optimum parameters of the SSSVI NES. The beam vibration suppression performance of the optimized SSSVI NES is then compared with both the SSVI NES and the case in which the NES is locked. When these devices have the same total mass, the SSSVI NES has superior vibration suppression performance, especially when the damping in the control device is light. The vibration suppression performance of the SSSVI NES is investigated when its location along the beam is varied. The effect of the clearance between the NES masses and the impact surface on the vibration suppression performance of the SSSVI NES is also investigated, as well as the device’s damping and the coefficient of restitution. Finally, the efficacy of the SSSVI NES device for seismic loads is investigated. The numerical results of this analysis show that the optimized SSSVI NES can effectively reduce the energy in the system and suppress the maximum bending moment and shear stress of the host cantilever beam.</description><subject>Automotive Engineering</subject><subject>Bending moments</subject><subject>Cantilever beams</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Damping</subject><subject>Dynamical Systems</subject><subject>Earthquake loads</subject><subject>Energy dissipation</subject><subject>Engineering</subject><subject>Euler-Bernoulli beams</subject><subject>Galerkin method</subject><subject>Impact analysis</subject><subject>Impulse loading</subject><subject>Investigations</subject><subject>Maximum bending</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Shear stress</subject><subject>Vibration</subject><subject>Vibration control</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouH78AU8Bz9FJ0o_NURa_QPSisLeQptMla5vUpBX25k-3awVvnmYYnvcdeAi54HDFAcrrxDmUnIEABnm-3w7IguelZKJQ60OyACUyBgrWx-QkpS0ASAHLBfl6HjuMzpqWpmGsdzQ01NC06zocpjNNzm9aZMnVWNNPV8XAXNcbO1AffOs8mkjRY9zs9ug7bUKk0fSuphFTH3zCaalHO7jg525r_OBa_MRIKzTdGTlqTJvw_Heekre729fVA3t6uX9c3TwxK7kaWCEh45XltRVoUYI0OTa1KOqqXEIJosglVEvMqgxNaWyVo8qUFBYMZpyrXJ6Sy7m3j-FjxDTobRijn15qIVUBqsygmCgxUzaGlCI2uo-uM3GnOei9aT2b1pNp_WNawxSScyhNsN9g_Kv-J_UNFU-DbQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Li, Wenke</creator><creator>Wierschem, Nicholas E.</creator><creator>Li, Xinhui</creator><creator>Yang, Tiejun</creator><creator>Brennan, Michael J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1069-1357</orcidid></search><sort><creationdate>20200401</creationdate><title>Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam</title><author>Li, Wenke ; Wierschem, Nicholas E. ; Li, Xinhui ; Yang, Tiejun ; Brennan, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-63041bc1dc2ece303a5efd26db7807026530b8e4b4ea7acb5e94932c0ae411953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Bending moments</topic><topic>Cantilever beams</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Damping</topic><topic>Dynamical Systems</topic><topic>Earthquake loads</topic><topic>Energy dissipation</topic><topic>Engineering</topic><topic>Euler-Bernoulli beams</topic><topic>Galerkin method</topic><topic>Impact analysis</topic><topic>Impulse loading</topic><topic>Investigations</topic><topic>Maximum bending</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Shear stress</topic><topic>Vibration</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenke</creatorcontrib><creatorcontrib>Wierschem, Nicholas E.</creatorcontrib><creatorcontrib>Li, Xinhui</creatorcontrib><creatorcontrib>Yang, Tiejun</creatorcontrib><creatorcontrib>Brennan, Michael J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenke</au><au>Wierschem, Nicholas E.</au><au>Li, Xinhui</au><au>Yang, Tiejun</au><au>Brennan, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>100</volume><issue>2</issue><spage>951</spage><epage>971</epage><pages>951-971</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper concerns an investigation into the control of the transient vibration of an Euler–Bernoulli beam using a symmetric single-sided vibro-impact nonlinear energy sink (SSSVI NES). The non-dimensional system of equations is derived by using the Galerkin method. Consideration and theoretical analysis of the impact dynamics of the device is carried out by introducing the impact modes. This analysis shows that the proposed SSSVI NES has increased complexity in its modes of energy dissipation compared with the single-sided vibro-impact NES (SSVI NES). Simulations are conducted with a wide variety of impulse loads to determine the optimum parameters of the SSSVI NES. The beam vibration suppression performance of the optimized SSSVI NES is then compared with both the SSVI NES and the case in which the NES is locked. When these devices have the same total mass, the SSSVI NES has superior vibration suppression performance, especially when the damping in the control device is light. The vibration suppression performance of the SSSVI NES is investigated when its location along the beam is varied. The effect of the clearance between the NES masses and the impact surface on the vibration suppression performance of the SSSVI NES is also investigated, as well as the device’s damping and the coefficient of restitution. Finally, the efficacy of the SSSVI NES device for seismic loads is investigated. The numerical results of this analysis show that the optimized SSSVI NES can effectively reduce the energy in the system and suppress the maximum bending moment and shear stress of the host cantilever beam.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-020-05571-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1069-1357</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2020-04, Vol.100 (2), p.951-971 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2396097406 |
source | SpringerLink Journals |
subjects | Automotive Engineering Bending moments Cantilever beams Classical Mechanics Computer simulation Control Damping Dynamical Systems Earthquake loads Energy dissipation Engineering Euler-Bernoulli beams Galerkin method Impact analysis Impulse loading Investigations Maximum bending Mechanical Engineering Original Paper Shear stress Vibration Vibration control |
title | Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20a%20symmetric%20single-sided%20vibro-impact%20nonlinear%20energy%20sink%20for%20rapid%20response%20reduction%20of%20a%20cantilever%20beam&rft.jtitle=Nonlinear%20dynamics&rft.au=Li,%20Wenke&rft.date=2020-04-01&rft.volume=100&rft.issue=2&rft.spage=951&rft.epage=971&rft.pages=951-971&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-020-05571-0&rft_dat=%3Cproquest_cross%3E2396097406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396097406&rft_id=info:pmid/&rfr_iscdi=true |