Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions

In this study, we enhance the dynamic connectedness measures originally introduced by Diebold and Yılmaz (2012, 2014) with a time-varying parameter vector autoregressive model (TVP-VAR) which predicates upon a time-varying variance-covariance structure. This framework allows to capture possible chan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of risk and financial management 2020-04, Vol.13 (4), p.1-23
Hauptverfasser: Antonakakis, Nikolaos, Chatziantoniou, Ioannis, Gabauer, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 4
container_start_page 1
container_title Journal of risk and financial management
container_volume 13
creator Antonakakis, Nikolaos
Chatziantoniou, Ioannis
Gabauer, David
description In this study, we enhance the dynamic connectedness measures originally introduced by Diebold and Yılmaz (2012, 2014) with a time-varying parameter vector autoregressive model (TVP-VAR) which predicates upon a time-varying variance-covariance structure. This framework allows to capture possible changes in the underlying structure of the data in a more flexible and robust manner. Specifically, there is neither a need to arbitrarily set the rolling-window size nor a loss of observations in the calculation of the dynamic measures of connectedness, as no rolling-window analysis is involved. Given that the proposed framework rests on multivariate Kalman filters, it is less sensitive to outliers. Furthermore, we emphasise the merits of this approach by conducting Monte Carlo simulations. We put our framework into practice by investigating dynamic connectedness measures of the four most traded foreign exchange rates, comparing the TVP-VAR results to those obtained from three different rolling-window settings. Finally, we propose uncertainty measures for both TVP-VAR-based and rolling-window VAR-based dynamic connectedness measures.
doi_str_mv 10.3390/jrfm13040084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2396022598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396022598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-177db729eb58c8106b84eff4cffecc14ccc3376ff0f71858bc566f35aa7df12e3</originalsourceid><addsrcrecordid>eNpV0FFLwzAQB_AgCo65N1-FgK9WkyZt0kcZOoWBIAq-1TS9jA6bzFw72Lc3Y4Lz5e4efrkjf0IuObsVomJ36-h6LphkTMsTMuEV55lmSp4ezedkhrhmjHGW3gg9IZ-v4DoPLe3B4BgBaXC03XnTd5ba4D3YAVoPiLQxmFzwdOh6yLYm7jq_ohsTTQ8DRLpNNERqxlRhlVZhFzxekDNnvhBmv31K3h8f3uZP2fJl8Ty_X2ZWqmrIuFJto_IKmkJbzVnZaAnOSescWMultVYIVTrHnOK60I0tytKJwhjVOp6DmJLrw95NDN8j4FCvwxh9OlnnoipZnheVTurmoGwMiBFcvYldn75Sc1bvY6yPY0ycHjikKDr8w0qUWlU8_0jk6h_ZN0wJ7K9ylYsfLBN8bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396022598</pqid></control><display><type>article</type><title>Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Antonakakis, Nikolaos ; Chatziantoniou, Ioannis ; Gabauer, David</creator><creatorcontrib>Antonakakis, Nikolaos ; Chatziantoniou, Ioannis ; Gabauer, David</creatorcontrib><description>In this study, we enhance the dynamic connectedness measures originally introduced by Diebold and Yılmaz (2012, 2014) with a time-varying parameter vector autoregressive model (TVP-VAR) which predicates upon a time-varying variance-covariance structure. This framework allows to capture possible changes in the underlying structure of the data in a more flexible and robust manner. Specifically, there is neither a need to arbitrarily set the rolling-window size nor a loss of observations in the calculation of the dynamic measures of connectedness, as no rolling-window analysis is involved. Given that the proposed framework rests on multivariate Kalman filters, it is less sensitive to outliers. Furthermore, we emphasise the merits of this approach by conducting Monte Carlo simulations. We put our framework into practice by investigating dynamic connectedness measures of the four most traded foreign exchange rates, comparing the TVP-VAR results to those obtained from three different rolling-window settings. Finally, we propose uncertainty measures for both TVP-VAR-based and rolling-window VAR-based dynamic connectedness measures.</description><identifier>ISSN: 1911-8074</identifier><identifier>ISSN: 1911-8066</identifier><identifier>EISSN: 1911-8074</identifier><identifier>DOI: 10.3390/jrfm13040084</identifier><language>eng</language><publisher>Basel: MDPI</publisher><subject>Currencies ; dynamic connectedness ; Foreign exchange markets ; Foreign exchange rates ; International finance ; Monte Carlo simulation ; Securities markets ; Sensitivity analysis ; Studies ; TVP-VAR ; Volatility</subject><ispartof>Journal of risk and financial management, 2020-04, Vol.13 (4), p.1-23</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-177db729eb58c8106b84eff4cffecc14ccc3376ff0f71858bc566f35aa7df12e3</citedby><cites>FETCH-LOGICAL-c479t-177db729eb58c8106b84eff4cffecc14ccc3376ff0f71858bc566f35aa7df12e3</cites><orcidid>0000-0003-2465-5741 ; 0000-0002-0904-3678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Antonakakis, Nikolaos</creatorcontrib><creatorcontrib>Chatziantoniou, Ioannis</creatorcontrib><creatorcontrib>Gabauer, David</creatorcontrib><title>Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions</title><title>Journal of risk and financial management</title><description>In this study, we enhance the dynamic connectedness measures originally introduced by Diebold and Yılmaz (2012, 2014) with a time-varying parameter vector autoregressive model (TVP-VAR) which predicates upon a time-varying variance-covariance structure. This framework allows to capture possible changes in the underlying structure of the data in a more flexible and robust manner. Specifically, there is neither a need to arbitrarily set the rolling-window size nor a loss of observations in the calculation of the dynamic measures of connectedness, as no rolling-window analysis is involved. Given that the proposed framework rests on multivariate Kalman filters, it is less sensitive to outliers. Furthermore, we emphasise the merits of this approach by conducting Monte Carlo simulations. We put our framework into practice by investigating dynamic connectedness measures of the four most traded foreign exchange rates, comparing the TVP-VAR results to those obtained from three different rolling-window settings. Finally, we propose uncertainty measures for both TVP-VAR-based and rolling-window VAR-based dynamic connectedness measures.</description><subject>Currencies</subject><subject>dynamic connectedness</subject><subject>Foreign exchange markets</subject><subject>Foreign exchange rates</subject><subject>International finance</subject><subject>Monte Carlo simulation</subject><subject>Securities markets</subject><subject>Sensitivity analysis</subject><subject>Studies</subject><subject>TVP-VAR</subject><subject>Volatility</subject><issn>1911-8074</issn><issn>1911-8066</issn><issn>1911-8074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpV0FFLwzAQB_AgCo65N1-FgK9WkyZt0kcZOoWBIAq-1TS9jA6bzFw72Lc3Y4Lz5e4efrkjf0IuObsVomJ36-h6LphkTMsTMuEV55lmSp4ezedkhrhmjHGW3gg9IZ-v4DoPLe3B4BgBaXC03XnTd5ba4D3YAVoPiLQxmFzwdOh6yLYm7jq_ohsTTQ8DRLpNNERqxlRhlVZhFzxekDNnvhBmv31K3h8f3uZP2fJl8Ty_X2ZWqmrIuFJto_IKmkJbzVnZaAnOSescWMultVYIVTrHnOK60I0tytKJwhjVOp6DmJLrw95NDN8j4FCvwxh9OlnnoipZnheVTurmoGwMiBFcvYldn75Sc1bvY6yPY0ycHjikKDr8w0qUWlU8_0jk6h_ZN0wJ7K9ylYsfLBN8bQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Antonakakis, Nikolaos</creator><creator>Chatziantoniou, Ioannis</creator><creator>Gabauer, David</creator><general>MDPI</general><general>MDPI AG</general><scope>OT2</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2465-5741</orcidid><orcidid>https://orcid.org/0000-0002-0904-3678</orcidid></search><sort><creationdate>20200401</creationdate><title>Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions</title><author>Antonakakis, Nikolaos ; Chatziantoniou, Ioannis ; Gabauer, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-177db729eb58c8106b84eff4cffecc14ccc3376ff0f71858bc566f35aa7df12e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Currencies</topic><topic>dynamic connectedness</topic><topic>Foreign exchange markets</topic><topic>Foreign exchange rates</topic><topic>International finance</topic><topic>Monte Carlo simulation</topic><topic>Securities markets</topic><topic>Sensitivity analysis</topic><topic>Studies</topic><topic>TVP-VAR</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonakakis, Nikolaos</creatorcontrib><creatorcontrib>Chatziantoniou, Ioannis</creatorcontrib><creatorcontrib>Gabauer, David</creatorcontrib><collection>EconStor</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of risk and financial management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonakakis, Nikolaos</au><au>Chatziantoniou, Ioannis</au><au>Gabauer, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions</atitle><jtitle>Journal of risk and financial management</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>13</volume><issue>4</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>1911-8074</issn><issn>1911-8066</issn><eissn>1911-8074</eissn><abstract>In this study, we enhance the dynamic connectedness measures originally introduced by Diebold and Yılmaz (2012, 2014) with a time-varying parameter vector autoregressive model (TVP-VAR) which predicates upon a time-varying variance-covariance structure. This framework allows to capture possible changes in the underlying structure of the data in a more flexible and robust manner. Specifically, there is neither a need to arbitrarily set the rolling-window size nor a loss of observations in the calculation of the dynamic measures of connectedness, as no rolling-window analysis is involved. Given that the proposed framework rests on multivariate Kalman filters, it is less sensitive to outliers. Furthermore, we emphasise the merits of this approach by conducting Monte Carlo simulations. We put our framework into practice by investigating dynamic connectedness measures of the four most traded foreign exchange rates, comparing the TVP-VAR results to those obtained from three different rolling-window settings. Finally, we propose uncertainty measures for both TVP-VAR-based and rolling-window VAR-based dynamic connectedness measures.</abstract><cop>Basel</cop><pub>MDPI</pub><doi>10.3390/jrfm13040084</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2465-5741</orcidid><orcidid>https://orcid.org/0000-0002-0904-3678</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1911-8074
ispartof Journal of risk and financial management, 2020-04, Vol.13 (4), p.1-23
issn 1911-8074
1911-8066
1911-8074
language eng
recordid cdi_proquest_journals_2396022598
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Currencies
dynamic connectedness
Foreign exchange markets
Foreign exchange rates
International finance
Monte Carlo simulation
Securities markets
Sensitivity analysis
Studies
TVP-VAR
Volatility
title Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refined%20measures%20of%20dynamic%20connectedness%20based%20on%20time-varying%20parameter%20vector%20autoregressions&rft.jtitle=Journal%20of%20risk%20and%20financial%20management&rft.au=Antonakakis,%20Nikolaos&rft.date=2020-04-01&rft.volume=13&rft.issue=4&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=1911-8074&rft.eissn=1911-8074&rft_id=info:doi/10.3390/jrfm13040084&rft_dat=%3Cproquest_cross%3E2396022598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396022598&rft_id=info:pmid/&rfr_iscdi=true