A Distributed Intrusion Detection Model via Nondestructive Partitioning and Balanced Allocation for Big Data

There are two key issues in distributed intrusion detection system, that is, maintaining load balance of system and protecting data integrity. To address these issues, this paper proposes a new distributed intrusion detection model for big data based on nondestructive partitioning and balanced alloc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2018, Vol.56 (1), p.61
Hauptverfasser: Wu, Xiaonian, Zhang, Chuyun, Zhang, Runlian, Wang, Yujue, Cui, Jinhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 61
container_title Computers, materials & continua
container_volume 56
creator Wu, Xiaonian
Zhang, Chuyun
Zhang, Runlian
Wang, Yujue
Cui, Jinhua
description There are two key issues in distributed intrusion detection system, that is, maintaining load balance of system and protecting data integrity. To address these issues, this paper proposes a new distributed intrusion detection model for big data based on nondestructive partitioning and balanced allocation. A data allocation strategy based on capacity and workload is introduced to achieve local load balance, and a dynamic load adjustment strategy is adopted to maintain global load balance of cluster. Moreover, data integrity is protected by using session reassemble and session partitioning. The simulation results show that the new model enjoys favorable advantages such as good load balance, higher detection rate and detection efficiency.
doi_str_mv 10.3970/cmc.2018.02449
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2396011251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396011251</sourcerecordid><originalsourceid>FETCH-LOGICAL-p211t-743792ada653fab70202a69789e9cf2c9bf4dab17718e483ebe6f05f624f9abe3</originalsourceid><addsrcrecordid>eNp9jjtPwzAUhS0EEqWwMltiTvHb8Zi2PCqVxwBzdePYlatgl8Tp7ycFxMh0j3S_80DompIZN5rc2g87Y4SWM8KEMCdoQqVQBWNMnf5pWp6ji77fEcIVN2SC2govQ5-7UA_ZNXgVczf0IUW8dNnZfFRPqXEtPgTAzyk2boSH8XFw-BW6HI5IiFsMscFzaCHaMaZq22Th2-1Th-dhi5eQ4RKdeWh7d_V7p-j9_u5t8VisXx5Wi2pd7BmludCCa8OgASW5h1oTRhgoo0vjjPXMmtqLBmqqNS2dKLmrnfJEesWEN1A7PkU3P7n7Ln0O4-LNLg1dHCs3jBtFKGWS_ktRSoiUkhj-BQq2Z0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396011251</pqid></control><display><type>article</type><title>A Distributed Intrusion Detection Model via Nondestructive Partitioning and Balanced Allocation for Big Data</title><source>EZB Electronic Journals Library</source><creator>Wu, Xiaonian ; Zhang, Chuyun ; Zhang, Runlian ; Wang, Yujue ; Cui, Jinhua</creator><creatorcontrib>Wu, Xiaonian ; Zhang, Chuyun ; Zhang, Runlian ; Wang, Yujue ; Cui, Jinhua</creatorcontrib><description>There are two key issues in distributed intrusion detection system, that is, maintaining load balance of system and protecting data integrity. To address these issues, this paper proposes a new distributed intrusion detection model for big data based on nondestructive partitioning and balanced allocation. A data allocation strategy based on capacity and workload is introduced to achieve local load balance, and a dynamic load adjustment strategy is adopted to maintain global load balance of cluster. Moreover, data integrity is protected by using session reassemble and session partitioning. The simulation results show that the new model enjoys favorable advantages such as good load balance, higher detection rate and detection efficiency.</description><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.3970/cmc.2018.02449</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Big Data ; Computer simulation ; Cybersecurity ; Data integrity ; Data management ; Dynamic loads ; Integrity ; Intrusion detection systems ; Load balancing ; Network switching ; Partitioning ; Workload</subject><ispartof>Computers, materials &amp; continua, 2018, Vol.56 (1), p.61</ispartof><rights>Copyright Tech Science Press 2018</rights><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Wu, Xiaonian</creatorcontrib><creatorcontrib>Zhang, Chuyun</creatorcontrib><creatorcontrib>Zhang, Runlian</creatorcontrib><creatorcontrib>Wang, Yujue</creatorcontrib><creatorcontrib>Cui, Jinhua</creatorcontrib><title>A Distributed Intrusion Detection Model via Nondestructive Partitioning and Balanced Allocation for Big Data</title><title>Computers, materials &amp; continua</title><description>There are two key issues in distributed intrusion detection system, that is, maintaining load balance of system and protecting data integrity. To address these issues, this paper proposes a new distributed intrusion detection model for big data based on nondestructive partitioning and balanced allocation. A data allocation strategy based on capacity and workload is introduced to achieve local load balance, and a dynamic load adjustment strategy is adopted to maintain global load balance of cluster. Moreover, data integrity is protected by using session reassemble and session partitioning. The simulation results show that the new model enjoys favorable advantages such as good load balance, higher detection rate and detection efficiency.</description><subject>Big Data</subject><subject>Computer simulation</subject><subject>Cybersecurity</subject><subject>Data integrity</subject><subject>Data management</subject><subject>Dynamic loads</subject><subject>Integrity</subject><subject>Intrusion detection systems</subject><subject>Load balancing</subject><subject>Network switching</subject><subject>Partitioning</subject><subject>Workload</subject><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9jjtPwzAUhS0EEqWwMltiTvHb8Zi2PCqVxwBzdePYlatgl8Tp7ycFxMh0j3S_80DompIZN5rc2g87Y4SWM8KEMCdoQqVQBWNMnf5pWp6ji77fEcIVN2SC2govQ5-7UA_ZNXgVczf0IUW8dNnZfFRPqXEtPgTAzyk2boSH8XFw-BW6HI5IiFsMscFzaCHaMaZq22Th2-1Th-dhi5eQ4RKdeWh7d_V7p-j9_u5t8VisXx5Wi2pd7BmludCCa8OgASW5h1oTRhgoo0vjjPXMmtqLBmqqNS2dKLmrnfJEesWEN1A7PkU3P7n7Ln0O4-LNLg1dHCs3jBtFKGWS_ktRSoiUkhj-BQq2Z0g</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Wu, Xiaonian</creator><creator>Zhang, Chuyun</creator><creator>Zhang, Runlian</creator><creator>Wang, Yujue</creator><creator>Cui, Jinhua</creator><general>Tech Science Press</general><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2018</creationdate><title>A Distributed Intrusion Detection Model via Nondestructive Partitioning and Balanced Allocation for Big Data</title><author>Wu, Xiaonian ; Zhang, Chuyun ; Zhang, Runlian ; Wang, Yujue ; Cui, Jinhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p211t-743792ada653fab70202a69789e9cf2c9bf4dab17718e483ebe6f05f624f9abe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Big Data</topic><topic>Computer simulation</topic><topic>Cybersecurity</topic><topic>Data integrity</topic><topic>Data management</topic><topic>Dynamic loads</topic><topic>Integrity</topic><topic>Intrusion detection systems</topic><topic>Load balancing</topic><topic>Network switching</topic><topic>Partitioning</topic><topic>Workload</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaonian</creatorcontrib><creatorcontrib>Zhang, Chuyun</creatorcontrib><creatorcontrib>Zhang, Runlian</creatorcontrib><creatorcontrib>Wang, Yujue</creatorcontrib><creatorcontrib>Cui, Jinhua</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computers, materials &amp; continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiaonian</au><au>Zhang, Chuyun</au><au>Zhang, Runlian</au><au>Wang, Yujue</au><au>Cui, Jinhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Distributed Intrusion Detection Model via Nondestructive Partitioning and Balanced Allocation for Big Data</atitle><jtitle>Computers, materials &amp; continua</jtitle><date>2018</date><risdate>2018</risdate><volume>56</volume><issue>1</issue><spage>61</spage><pages>61-</pages><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>There are two key issues in distributed intrusion detection system, that is, maintaining load balance of system and protecting data integrity. To address these issues, this paper proposes a new distributed intrusion detection model for big data based on nondestructive partitioning and balanced allocation. A data allocation strategy based on capacity and workload is introduced to achieve local load balance, and a dynamic load adjustment strategy is adopted to maintain global load balance of cluster. Moreover, data integrity is protected by using session reassemble and session partitioning. The simulation results show that the new model enjoys favorable advantages such as good load balance, higher detection rate and detection efficiency.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.3970/cmc.2018.02449</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1546-2218
ispartof Computers, materials & continua, 2018, Vol.56 (1), p.61
issn 1546-2218
1546-2226
language eng
recordid cdi_proquest_journals_2396011251
source EZB Electronic Journals Library
subjects Big Data
Computer simulation
Cybersecurity
Data integrity
Data management
Dynamic loads
Integrity
Intrusion detection systems
Load balancing
Network switching
Partitioning
Workload
title A Distributed Intrusion Detection Model via Nondestructive Partitioning and Balanced Allocation for Big Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Distributed%20Intrusion%20Detection%20Model%20via%20Nondestructive%20Partitioning%20and%20Balanced%20Allocation%20for%20Big%20Data&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=Wu,%20Xiaonian&rft.date=2018&rft.volume=56&rft.issue=1&rft.spage=61&rft.pages=61-&rft.issn=1546-2218&rft.eissn=1546-2226&rft_id=info:doi/10.3970/cmc.2018.02449&rft_dat=%3Cproquest%3E2396011251%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396011251&rft_id=info:pmid/&rfr_iscdi=true