A Privacy-Preserving Image Retrieval Based on AC-Coefficients and Color Histograms in Cloud Environment

Content based image retrieval (CBIR) techniques have been widely deployed in many applications for seeking the abundant information existed in images. Due to large amounts of storage and computational requirements of CBIR, outsourcing image search work to the cloud provider becomes a very attractive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua materials & continua, 2019-01, Vol.58 (1), p.27-43
Hauptverfasser: Xia, Zhihua, Lu, Lihua, Qiu, Tong, Shim, H J, Chen, Xianyi, Jeon, Byeungwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Content based image retrieval (CBIR) techniques have been widely deployed in many applications for seeking the abundant information existed in images. Due to large amounts of storage and computational requirements of CBIR, outsourcing image search work to the cloud provider becomes a very attractive option for many owners with small devices. However, owing to the private content contained in images, directly outsourcing retrieval work to the cloud provider apparently bring about privacy problem, so the images should be protected carefully before outsourcing. This paper presents a secure retrieval scheme for the encrypted images in the YUV color space. With this scheme, the discrete cosine transform (DCT) is performed on the Y component. The resulting DC coefficients are encrypted with stream cipher technology and the resulting AC coefficients as well as other two color components are encrypted with value permutation and position scrambling. Then the image owner transmits the encrypted images to the cloud server. When receiving a query trapdoor form on query user, the server extracts AC-coefficients histogram from the encrypted Y component and extracts two color histograms from the other two color components. The similarity between query trapdoor and database image is measured by calculating the Manhattan distance of their respective histograms. Finally, the encrypted images closest to the query image are returned to the query user.
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2019.02688