Interpretable Deep Learning for Spatial Analysis of Severe Hailstorms
Deep learning models, such as convolutional neural networks, utilize multiple specialized layers to encode spatial patterns at different scales. In this study, deep learning models are compared with standard machine learning approaches on the task of predicting the probability of severe hail based o...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2019-08, Vol.147 (8), p.2827-2845 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2845 |
---|---|
container_issue | 8 |
container_start_page | 2827 |
container_title | Monthly weather review |
container_volume | 147 |
creator | Gagne II, David John Haupt, Sue Ellen Nychka, Douglas W. Thompson, Gregory |
description | Deep learning models, such as convolutional neural networks, utilize multiple specialized layers to encode spatial patterns at different scales. In this study, deep learning models are compared with standard machine learning approaches on the task of predicting the probability of severe hail based on upper-air dynamic and thermodynamic fields from a convection-allowing numerical weather prediction model. The data for this study come from patches surrounding storms identified in NCAR convection-allowing ensemble runs from 3 May to 3 June 2016. The machine learning models are trained to predict whether the simulated surface hail size from the Thompson hail size diagnostic exceeds 25 mm over the hour following storm detection. A convolutional neural network is compared with logistic regressions using input variables derived from either the spatial means of each field or principal component analysis. The convolutional neural network statistically significantly outperforms all other methods in terms of Brier skill score and area under the receiver operator characteristic curve. Interpretation of the convolutional neural network through feature importance and feature optimization reveals that the network synthesized information about the environment and storm morphology that is consistent with our understanding of hail growth, including large lapse rates and a wind shear profile that favors wide updrafts. Different neurons in the network also record different storm modes, and the magnitude of the output of those neurons is used to analyze the spatiotemporal distributions of different storm modes in the NCAR ensemble. |
doi_str_mv | 10.1175/MWR-D-18-0316.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2395964232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395964232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-545e40f220a8634f34fb5f36268cb847953c640c134bcc352c3c29342b950e513</originalsourceid><addsrcrecordid>eNotkEFLAzEUhIMoWKtnrwHPaV_yknT3WNpqCxXBKh5DNryVLdvdNdkK_fduqTAwl2GY-Rh7lDCRcmamr1_vYilkJgClncgrNpJGgQCd4zUbAaiZAKv1LbtLaQ8A1mo1YqtN01PsIvW-qIkviTq-JR-bqvnmZRv5rvN95Ws-b3x9SlXibcl39EuR-NpXderbeEj37Kb0daKHfx-zz-fVx2Ittm8vm8V8KwJK6IXRhjSUSoHPLOpyUGFKtMpmocj0LDcYrIYgURchoFEBg8pRqyI3QEbimD1dervY_hwp9W7fHuOwLDmFucmHS6iG1PSSCrFNKVLpulgdfDw5Ce7Myg2s3NLJzJ1ZOYl_eTVazQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395964232</pqid></control><display><type>article</type><title>Interpretable Deep Learning for Spatial Analysis of Severe Hailstorms</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Gagne II, David John ; Haupt, Sue Ellen ; Nychka, Douglas W. ; Thompson, Gregory</creator><creatorcontrib>Gagne II, David John ; Haupt, Sue Ellen ; Nychka, Douglas W. ; Thompson, Gregory</creatorcontrib><description>Deep learning models, such as convolutional neural networks, utilize multiple specialized layers to encode spatial patterns at different scales. In this study, deep learning models are compared with standard machine learning approaches on the task of predicting the probability of severe hail based on upper-air dynamic and thermodynamic fields from a convection-allowing numerical weather prediction model. The data for this study come from patches surrounding storms identified in NCAR convection-allowing ensemble runs from 3 May to 3 June 2016. The machine learning models are trained to predict whether the simulated surface hail size from the Thompson hail size diagnostic exceeds 25 mm over the hour following storm detection. A convolutional neural network is compared with logistic regressions using input variables derived from either the spatial means of each field or principal component analysis. The convolutional neural network statistically significantly outperforms all other methods in terms of Brier skill score and area under the receiver operator characteristic curve. Interpretation of the convolutional neural network through feature importance and feature optimization reveals that the network synthesized information about the environment and storm morphology that is consistent with our understanding of hail growth, including large lapse rates and a wind shear profile that favors wide updrafts. Different neurons in the network also record different storm modes, and the magnitude of the output of those neurons is used to analyze the spatiotemporal distributions of different storm modes in the NCAR ensemble.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-18-0316.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Algorithms ; Artificial neural networks ; Automation ; Computer simulation ; Convection ; Deep learning ; Diagnostic systems ; Embryos ; Growth models ; Hail ; Hailstorms ; Lapse rate ; Learning algorithms ; Machine learning ; Morphology ; Neural networks ; Neurons ; Numerical weather forecasting ; Optimization ; Prediction models ; Principal components analysis ; Probability theory ; Regression analysis ; Severe hailstorms ; Spatial analysis ; Statistical analysis ; Storm detection ; Storms ; Thermodynamic fields ; Updraft ; Weather forecasting ; Wind shear</subject><ispartof>Monthly weather review, 2019-08, Vol.147 (8), p.2827-2845</ispartof><rights>Copyright American Meteorological Society Aug 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-545e40f220a8634f34fb5f36268cb847953c640c134bcc352c3c29342b950e513</citedby><cites>FETCH-LOGICAL-c310t-545e40f220a8634f34fb5f36268cb847953c640c134bcc352c3c29342b950e513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27903,27904</link.rule.ids></links><search><creatorcontrib>Gagne II, David John</creatorcontrib><creatorcontrib>Haupt, Sue Ellen</creatorcontrib><creatorcontrib>Nychka, Douglas W.</creatorcontrib><creatorcontrib>Thompson, Gregory</creatorcontrib><title>Interpretable Deep Learning for Spatial Analysis of Severe Hailstorms</title><title>Monthly weather review</title><description>Deep learning models, such as convolutional neural networks, utilize multiple specialized layers to encode spatial patterns at different scales. In this study, deep learning models are compared with standard machine learning approaches on the task of predicting the probability of severe hail based on upper-air dynamic and thermodynamic fields from a convection-allowing numerical weather prediction model. The data for this study come from patches surrounding storms identified in NCAR convection-allowing ensemble runs from 3 May to 3 June 2016. The machine learning models are trained to predict whether the simulated surface hail size from the Thompson hail size diagnostic exceeds 25 mm over the hour following storm detection. A convolutional neural network is compared with logistic regressions using input variables derived from either the spatial means of each field or principal component analysis. The convolutional neural network statistically significantly outperforms all other methods in terms of Brier skill score and area under the receiver operator characteristic curve. Interpretation of the convolutional neural network through feature importance and feature optimization reveals that the network synthesized information about the environment and storm morphology that is consistent with our understanding of hail growth, including large lapse rates and a wind shear profile that favors wide updrafts. Different neurons in the network also record different storm modes, and the magnitude of the output of those neurons is used to analyze the spatiotemporal distributions of different storm modes in the NCAR ensemble.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Deep learning</subject><subject>Diagnostic systems</subject><subject>Embryos</subject><subject>Growth models</subject><subject>Hail</subject><subject>Hailstorms</subject><subject>Lapse rate</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Numerical weather forecasting</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>Principal components analysis</subject><subject>Probability theory</subject><subject>Regression analysis</subject><subject>Severe hailstorms</subject><subject>Spatial analysis</subject><subject>Statistical analysis</subject><subject>Storm detection</subject><subject>Storms</subject><subject>Thermodynamic fields</subject><subject>Updraft</subject><subject>Weather forecasting</subject><subject>Wind shear</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkEFLAzEUhIMoWKtnrwHPaV_yknT3WNpqCxXBKh5DNryVLdvdNdkK_fduqTAwl2GY-Rh7lDCRcmamr1_vYilkJgClncgrNpJGgQCd4zUbAaiZAKv1LbtLaQ8A1mo1YqtN01PsIvW-qIkviTq-JR-bqvnmZRv5rvN95Ws-b3x9SlXibcl39EuR-NpXderbeEj37Kb0daKHfx-zz-fVx2Ittm8vm8V8KwJK6IXRhjSUSoHPLOpyUGFKtMpmocj0LDcYrIYgURchoFEBg8pRqyI3QEbimD1dervY_hwp9W7fHuOwLDmFucmHS6iG1PSSCrFNKVLpulgdfDw5Ce7Myg2s3NLJzJ1ZOYl_eTVazQ</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Gagne II, David John</creator><creator>Haupt, Sue Ellen</creator><creator>Nychka, Douglas W.</creator><creator>Thompson, Gregory</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190801</creationdate><title>Interpretable Deep Learning for Spatial Analysis of Severe Hailstorms</title><author>Gagne II, David John ; Haupt, Sue Ellen ; Nychka, Douglas W. ; Thompson, Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-545e40f220a8634f34fb5f36268cb847953c640c134bcc352c3c29342b950e513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Deep learning</topic><topic>Diagnostic systems</topic><topic>Embryos</topic><topic>Growth models</topic><topic>Hail</topic><topic>Hailstorms</topic><topic>Lapse rate</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Numerical weather forecasting</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>Principal components analysis</topic><topic>Probability theory</topic><topic>Regression analysis</topic><topic>Severe hailstorms</topic><topic>Spatial analysis</topic><topic>Statistical analysis</topic><topic>Storm detection</topic><topic>Storms</topic><topic>Thermodynamic fields</topic><topic>Updraft</topic><topic>Weather forecasting</topic><topic>Wind shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gagne II, David John</creatorcontrib><creatorcontrib>Haupt, Sue Ellen</creatorcontrib><creatorcontrib>Nychka, Douglas W.</creatorcontrib><creatorcontrib>Thompson, Gregory</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gagne II, David John</au><au>Haupt, Sue Ellen</au><au>Nychka, Douglas W.</au><au>Thompson, Gregory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable Deep Learning for Spatial Analysis of Severe Hailstorms</atitle><jtitle>Monthly weather review</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>147</volume><issue>8</issue><spage>2827</spage><epage>2845</epage><pages>2827-2845</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>Deep learning models, such as convolutional neural networks, utilize multiple specialized layers to encode spatial patterns at different scales. In this study, deep learning models are compared with standard machine learning approaches on the task of predicting the probability of severe hail based on upper-air dynamic and thermodynamic fields from a convection-allowing numerical weather prediction model. The data for this study come from patches surrounding storms identified in NCAR convection-allowing ensemble runs from 3 May to 3 June 2016. The machine learning models are trained to predict whether the simulated surface hail size from the Thompson hail size diagnostic exceeds 25 mm over the hour following storm detection. A convolutional neural network is compared with logistic regressions using input variables derived from either the spatial means of each field or principal component analysis. The convolutional neural network statistically significantly outperforms all other methods in terms of Brier skill score and area under the receiver operator characteristic curve. Interpretation of the convolutional neural network through feature importance and feature optimization reveals that the network synthesized information about the environment and storm morphology that is consistent with our understanding of hail growth, including large lapse rates and a wind shear profile that favors wide updrafts. Different neurons in the network also record different storm modes, and the magnitude of the output of those neurons is used to analyze the spatiotemporal distributions of different storm modes in the NCAR ensemble.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-18-0316.1</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-0644 |
ispartof | Monthly weather review, 2019-08, Vol.147 (8), p.2827-2845 |
issn | 0027-0644 1520-0493 |
language | eng |
recordid | cdi_proquest_journals_2395964232 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Artificial neural networks Automation Computer simulation Convection Deep learning Diagnostic systems Embryos Growth models Hail Hailstorms Lapse rate Learning algorithms Machine learning Morphology Neural networks Neurons Numerical weather forecasting Optimization Prediction models Principal components analysis Probability theory Regression analysis Severe hailstorms Spatial analysis Statistical analysis Storm detection Storms Thermodynamic fields Updraft Weather forecasting Wind shear |
title | Interpretable Deep Learning for Spatial Analysis of Severe Hailstorms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20Deep%20Learning%20for%20Spatial%20Analysis%20of%20Severe%20Hailstorms&rft.jtitle=Monthly%20weather%20review&rft.au=Gagne%20II,%20David%20John&rft.date=2019-08-01&rft.volume=147&rft.issue=8&rft.spage=2827&rft.epage=2845&rft.pages=2827-2845&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-18-0316.1&rft_dat=%3Cproquest_cross%3E2395964232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395964232&rft_id=info:pmid/&rfr_iscdi=true |