Stochastically Perturbed Parameterizations in an HRRR-Based Ensemble

A stochastically perturbed parameterization (SPP) approach that spatially and temporally perturbs parameters and variables in the Mellor–Yamada–Nakanishi–Niino planetary boundary layer scheme (PBL) and introduces initialization perturbations to soil moisture in the Rapid Update Cycle land surface mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2019-01, Vol.147 (1), p.153-173
Hauptverfasser: Jankov, Isidora, Beck, Jeffrey, Wolff, Jamie, Harrold, Michelle, Olson, Joseph B., Smirnova, Tatiana, Alexander, Curtis, Berner, Judith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue 1
container_start_page 153
container_title Monthly weather review
container_volume 147
creator Jankov, Isidora
Beck, Jeffrey
Wolff, Jamie
Harrold, Michelle
Olson, Joseph B.
Smirnova, Tatiana
Alexander, Curtis
Berner, Judith
description A stochastically perturbed parameterization (SPP) approach that spatially and temporally perturbs parameters and variables in the Mellor–Yamada–Nakanishi–Niino planetary boundary layer scheme (PBL) and introduces initialization perturbations to soil moisture in the Rapid Update Cycle land surface model was developed within the High-Resolution Rapid Refresh convection-allowing ensemble. This work is a follow-up study to a work performed using the Rapid Refresh (RAP)-based ensemble. In the present study, the SPP approach was used to target the performance of precipitation and low-level variables (e.g., 2-m temperature and dewpoint, and 10-m wind). The stochastic kinetic energy backscatter scheme and the stochastic perturbation of physics tendencies scheme were combined with the SPP approach and applied to the PBL to target upper-level variable performance (e.g., improved skill and reliability). The three stochastic experiments (SPP applied to PBL only, SPP applied to PBL combined with SKEB and SPPT, and stochastically perturbed soil moisture initial conditions) were compared to a mixed-physics ensemble. The results showed a positive impact from initial condition soil moisture perturbations on precipitation forecasts; however, it resulted in an increase in 2-m dewpoint RMSE. The experiment with perturbed parameters within the PBL showed an improvement in low-level wind forecasts for some verification metrics. The experiment that combined the three stochastic approaches together exhibited improved RMSE and spread for upper-level variables. Our study demonstrated that, by using the SPP approach, forecasts of specific variables can be improved. Also, the results showed that using a single-physics suite ensemble with stochastic methods is potentially an attractive alternative to using multiphysics for convection allowing ensembles.
doi_str_mv 10.1175/MWR-D-18-0092.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2395641707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395641707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-d089cf6e7676a9788433d124e36a2bc005cdbeb7bcea1f485c43181d8960dcf83</originalsourceid><addsrcrecordid>eNotkM9LwzAYhoMoOKdnrwXP2b4vSZP0qPvhhImjKh5DmqbY0bUz6Q7zr7djnt7Lw_vAQ8g9wgRRpdPXr5zOKWoKkLEJXpARpgwoiIxfkhEAUxSkENfkJsYtAEgp2IjM3_vOfdvY1842zTHZ-NAfQuHLZGOD3fneh_rX9nXXxqRuE9smqzzP6ZONA7Joo98Vjb8lV5Vtor_73zH5XC4-Ziu6fnt-mT2uqeMIPS1BZ66SXkklbaa0FpyXyITn0rLCAaSuLHyhCuctVkKnTnDUWOpMQukqzcfk4fy7D93PwcfebLtDaAelYTxLpUAFaqCmZ8qFLsbgK7MP9c6Go0Ewp1RmSGXmBrU5pTLI_wDOsVvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395641707</pqid></control><display><type>article</type><title>Stochastically Perturbed Parameterizations in an HRRR-Based Ensemble</title><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>AMS Journals (Meteorology)</source><creator>Jankov, Isidora ; Beck, Jeffrey ; Wolff, Jamie ; Harrold, Michelle ; Olson, Joseph B. ; Smirnova, Tatiana ; Alexander, Curtis ; Berner, Judith</creator><creatorcontrib>Jankov, Isidora ; Beck, Jeffrey ; Wolff, Jamie ; Harrold, Michelle ; Olson, Joseph B. ; Smirnova, Tatiana ; Alexander, Curtis ; Berner, Judith</creatorcontrib><description>A stochastically perturbed parameterization (SPP) approach that spatially and temporally perturbs parameters and variables in the Mellor–Yamada–Nakanishi–Niino planetary boundary layer scheme (PBL) and introduces initialization perturbations to soil moisture in the Rapid Update Cycle land surface model was developed within the High-Resolution Rapid Refresh convection-allowing ensemble. This work is a follow-up study to a work performed using the Rapid Refresh (RAP)-based ensemble. In the present study, the SPP approach was used to target the performance of precipitation and low-level variables (e.g., 2-m temperature and dewpoint, and 10-m wind). The stochastic kinetic energy backscatter scheme and the stochastic perturbation of physics tendencies scheme were combined with the SPP approach and applied to the PBL to target upper-level variable performance (e.g., improved skill and reliability). The three stochastic experiments (SPP applied to PBL only, SPP applied to PBL combined with SKEB and SPPT, and stochastically perturbed soil moisture initial conditions) were compared to a mixed-physics ensemble. The results showed a positive impact from initial condition soil moisture perturbations on precipitation forecasts; however, it resulted in an increase in 2-m dewpoint RMSE. The experiment with perturbed parameters within the PBL showed an improvement in low-level wind forecasts for some verification metrics. The experiment that combined the three stochastic approaches together exhibited improved RMSE and spread for upper-level variables. Our study demonstrated that, by using the SPP approach, forecasts of specific variables can be improved. Also, the results showed that using a single-physics suite ensemble with stochastic methods is potentially an attractive alternative to using multiphysics for convection allowing ensembles.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-18-0092.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Backscatter ; Backscattering ; Boundary layers ; Convection ; Data assimilation ; Experiments ; General circulation models ; Horizontal integration ; Initial conditions ; Kinetic energy ; Land surface models ; Parameterization ; Parameters ; Perturbation ; Perturbations ; Physics ; Planetary boundary layer ; Precipitation ; Precipitation forecasting ; Simulation ; Soil ; Soil conditions ; Soil moisture ; Soils ; Stochastic methods ; Weather forecasting ; Wind</subject><ispartof>Monthly weather review, 2019-01, Vol.147 (1), p.153-173</ispartof><rights>Copyright American Meteorological Society Jan 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-d089cf6e7676a9788433d124e36a2bc005cdbeb7bcea1f485c43181d8960dcf83</citedby><cites>FETCH-LOGICAL-c310t-d089cf6e7676a9788433d124e36a2bc005cdbeb7bcea1f485c43181d8960dcf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Jankov, Isidora</creatorcontrib><creatorcontrib>Beck, Jeffrey</creatorcontrib><creatorcontrib>Wolff, Jamie</creatorcontrib><creatorcontrib>Harrold, Michelle</creatorcontrib><creatorcontrib>Olson, Joseph B.</creatorcontrib><creatorcontrib>Smirnova, Tatiana</creatorcontrib><creatorcontrib>Alexander, Curtis</creatorcontrib><creatorcontrib>Berner, Judith</creatorcontrib><title>Stochastically Perturbed Parameterizations in an HRRR-Based Ensemble</title><title>Monthly weather review</title><description>A stochastically perturbed parameterization (SPP) approach that spatially and temporally perturbs parameters and variables in the Mellor–Yamada–Nakanishi–Niino planetary boundary layer scheme (PBL) and introduces initialization perturbations to soil moisture in the Rapid Update Cycle land surface model was developed within the High-Resolution Rapid Refresh convection-allowing ensemble. This work is a follow-up study to a work performed using the Rapid Refresh (RAP)-based ensemble. In the present study, the SPP approach was used to target the performance of precipitation and low-level variables (e.g., 2-m temperature and dewpoint, and 10-m wind). The stochastic kinetic energy backscatter scheme and the stochastic perturbation of physics tendencies scheme were combined with the SPP approach and applied to the PBL to target upper-level variable performance (e.g., improved skill and reliability). The three stochastic experiments (SPP applied to PBL only, SPP applied to PBL combined with SKEB and SPPT, and stochastically perturbed soil moisture initial conditions) were compared to a mixed-physics ensemble. The results showed a positive impact from initial condition soil moisture perturbations on precipitation forecasts; however, it resulted in an increase in 2-m dewpoint RMSE. The experiment with perturbed parameters within the PBL showed an improvement in low-level wind forecasts for some verification metrics. The experiment that combined the three stochastic approaches together exhibited improved RMSE and spread for upper-level variables. Our study demonstrated that, by using the SPP approach, forecasts of specific variables can be improved. Also, the results showed that using a single-physics suite ensemble with stochastic methods is potentially an attractive alternative to using multiphysics for convection allowing ensembles.</description><subject>Backscatter</subject><subject>Backscattering</subject><subject>Boundary layers</subject><subject>Convection</subject><subject>Data assimilation</subject><subject>Experiments</subject><subject>General circulation models</subject><subject>Horizontal integration</subject><subject>Initial conditions</subject><subject>Kinetic energy</subject><subject>Land surface models</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Perturbation</subject><subject>Perturbations</subject><subject>Physics</subject><subject>Planetary boundary layer</subject><subject>Precipitation</subject><subject>Precipitation forecasting</subject><subject>Simulation</subject><subject>Soil</subject><subject>Soil conditions</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>Stochastic methods</subject><subject>Weather forecasting</subject><subject>Wind</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkM9LwzAYhoMoOKdnrwXP2b4vSZP0qPvhhImjKh5DmqbY0bUz6Q7zr7djnt7Lw_vAQ8g9wgRRpdPXr5zOKWoKkLEJXpARpgwoiIxfkhEAUxSkENfkJsYtAEgp2IjM3_vOfdvY1842zTHZ-NAfQuHLZGOD3fneh_rX9nXXxqRuE9smqzzP6ZONA7Joo98Vjb8lV5Vtor_73zH5XC4-Ziu6fnt-mT2uqeMIPS1BZ66SXkklbaa0FpyXyITn0rLCAaSuLHyhCuctVkKnTnDUWOpMQukqzcfk4fy7D93PwcfebLtDaAelYTxLpUAFaqCmZ8qFLsbgK7MP9c6Go0Ewp1RmSGXmBrU5pTLI_wDOsVvY</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Jankov, Isidora</creator><creator>Beck, Jeffrey</creator><creator>Wolff, Jamie</creator><creator>Harrold, Michelle</creator><creator>Olson, Joseph B.</creator><creator>Smirnova, Tatiana</creator><creator>Alexander, Curtis</creator><creator>Berner, Judith</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190101</creationdate><title>Stochastically Perturbed Parameterizations in an HRRR-Based Ensemble</title><author>Jankov, Isidora ; Beck, Jeffrey ; Wolff, Jamie ; Harrold, Michelle ; Olson, Joseph B. ; Smirnova, Tatiana ; Alexander, Curtis ; Berner, Judith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-d089cf6e7676a9788433d124e36a2bc005cdbeb7bcea1f485c43181d8960dcf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Backscatter</topic><topic>Backscattering</topic><topic>Boundary layers</topic><topic>Convection</topic><topic>Data assimilation</topic><topic>Experiments</topic><topic>General circulation models</topic><topic>Horizontal integration</topic><topic>Initial conditions</topic><topic>Kinetic energy</topic><topic>Land surface models</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Perturbation</topic><topic>Perturbations</topic><topic>Physics</topic><topic>Planetary boundary layer</topic><topic>Precipitation</topic><topic>Precipitation forecasting</topic><topic>Simulation</topic><topic>Soil</topic><topic>Soil conditions</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>Stochastic methods</topic><topic>Weather forecasting</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jankov, Isidora</creatorcontrib><creatorcontrib>Beck, Jeffrey</creatorcontrib><creatorcontrib>Wolff, Jamie</creatorcontrib><creatorcontrib>Harrold, Michelle</creatorcontrib><creatorcontrib>Olson, Joseph B.</creatorcontrib><creatorcontrib>Smirnova, Tatiana</creatorcontrib><creatorcontrib>Alexander, Curtis</creatorcontrib><creatorcontrib>Berner, Judith</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jankov, Isidora</au><au>Beck, Jeffrey</au><au>Wolff, Jamie</au><au>Harrold, Michelle</au><au>Olson, Joseph B.</au><au>Smirnova, Tatiana</au><au>Alexander, Curtis</au><au>Berner, Judith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastically Perturbed Parameterizations in an HRRR-Based Ensemble</atitle><jtitle>Monthly weather review</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>147</volume><issue>1</issue><spage>153</spage><epage>173</epage><pages>153-173</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>A stochastically perturbed parameterization (SPP) approach that spatially and temporally perturbs parameters and variables in the Mellor–Yamada–Nakanishi–Niino planetary boundary layer scheme (PBL) and introduces initialization perturbations to soil moisture in the Rapid Update Cycle land surface model was developed within the High-Resolution Rapid Refresh convection-allowing ensemble. This work is a follow-up study to a work performed using the Rapid Refresh (RAP)-based ensemble. In the present study, the SPP approach was used to target the performance of precipitation and low-level variables (e.g., 2-m temperature and dewpoint, and 10-m wind). The stochastic kinetic energy backscatter scheme and the stochastic perturbation of physics tendencies scheme were combined with the SPP approach and applied to the PBL to target upper-level variable performance (e.g., improved skill and reliability). The three stochastic experiments (SPP applied to PBL only, SPP applied to PBL combined with SKEB and SPPT, and stochastically perturbed soil moisture initial conditions) were compared to a mixed-physics ensemble. The results showed a positive impact from initial condition soil moisture perturbations on precipitation forecasts; however, it resulted in an increase in 2-m dewpoint RMSE. The experiment with perturbed parameters within the PBL showed an improvement in low-level wind forecasts for some verification metrics. The experiment that combined the three stochastic approaches together exhibited improved RMSE and spread for upper-level variables. Our study demonstrated that, by using the SPP approach, forecasts of specific variables can be improved. Also, the results showed that using a single-physics suite ensemble with stochastic methods is potentially an attractive alternative to using multiphysics for convection allowing ensembles.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-18-0092.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2019-01, Vol.147 (1), p.153-173
issn 0027-0644
1520-0493
language eng
recordid cdi_proquest_journals_2395641707
source Alma/SFX Local Collection; EZB Electronic Journals Library; AMS Journals (Meteorology)
subjects Backscatter
Backscattering
Boundary layers
Convection
Data assimilation
Experiments
General circulation models
Horizontal integration
Initial conditions
Kinetic energy
Land surface models
Parameterization
Parameters
Perturbation
Perturbations
Physics
Planetary boundary layer
Precipitation
Precipitation forecasting
Simulation
Soil
Soil conditions
Soil moisture
Soils
Stochastic methods
Weather forecasting
Wind
title Stochastically Perturbed Parameterizations in an HRRR-Based Ensemble
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastically%20Perturbed%20Parameterizations%20in%20an%20HRRR-Based%20Ensemble&rft.jtitle=Monthly%20weather%20review&rft.au=Jankov,%20Isidora&rft.date=2019-01-01&rft.volume=147&rft.issue=1&rft.spage=153&rft.epage=173&rft.pages=153-173&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-18-0092.1&rft_dat=%3Cproquest_cross%3E2395641707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395641707&rft_id=info:pmid/&rfr_iscdi=true