Stochastically Perturbed Parameterizations in an HRRR-Based Ensemble
A stochastically perturbed parameterization (SPP) approach that spatially and temporally perturbs parameters and variables in the Mellor–Yamada–Nakanishi–Niino planetary boundary layer scheme (PBL) and introduces initialization perturbations to soil moisture in the Rapid Update Cycle land surface mo...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2019-01, Vol.147 (1), p.153-173 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | 1 |
container_start_page | 153 |
container_title | Monthly weather review |
container_volume | 147 |
creator | Jankov, Isidora Beck, Jeffrey Wolff, Jamie Harrold, Michelle Olson, Joseph B. Smirnova, Tatiana Alexander, Curtis Berner, Judith |
description | A stochastically perturbed parameterization (SPP) approach that spatially and temporally perturbs parameters and variables in the Mellor–Yamada–Nakanishi–Niino planetary boundary layer scheme (PBL) and introduces initialization perturbations to soil moisture in the Rapid Update Cycle land surface model was developed within the High-Resolution Rapid Refresh convection-allowing ensemble. This work is a follow-up study to a work performed using the Rapid Refresh (RAP)-based ensemble. In the present study, the SPP approach was used to target the performance of precipitation and low-level variables (e.g., 2-m temperature and dewpoint, and 10-m wind). The stochastic kinetic energy backscatter scheme and the stochastic perturbation of physics tendencies scheme were combined with the SPP approach and applied to the PBL to target upper-level variable performance (e.g., improved skill and reliability). The three stochastic experiments (SPP applied to PBL only, SPP applied to PBL combined with SKEB and SPPT, and stochastically perturbed soil moisture initial conditions) were compared to a mixed-physics ensemble. The results showed a positive impact from initial condition soil moisture perturbations on precipitation forecasts; however, it resulted in an increase in 2-m dewpoint RMSE. The experiment with perturbed parameters within the PBL showed an improvement in low-level wind forecasts for some verification metrics. The experiment that combined the three stochastic approaches together exhibited improved RMSE and spread for upper-level variables. Our study demonstrated that, by using the SPP approach, forecasts of specific variables can be improved. Also, the results showed that using a single-physics suite ensemble with stochastic methods is potentially an attractive alternative to using multiphysics for convection allowing ensembles. |
doi_str_mv | 10.1175/MWR-D-18-0092.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2395641707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395641707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-d089cf6e7676a9788433d124e36a2bc005cdbeb7bcea1f485c43181d8960dcf83</originalsourceid><addsrcrecordid>eNotkM9LwzAYhoMoOKdnrwXP2b4vSZP0qPvhhImjKh5DmqbY0bUz6Q7zr7djnt7Lw_vAQ8g9wgRRpdPXr5zOKWoKkLEJXpARpgwoiIxfkhEAUxSkENfkJsYtAEgp2IjM3_vOfdvY1842zTHZ-NAfQuHLZGOD3fneh_rX9nXXxqRuE9smqzzP6ZONA7Joo98Vjb8lV5Vtor_73zH5XC4-Ziu6fnt-mT2uqeMIPS1BZ66SXkklbaa0FpyXyITn0rLCAaSuLHyhCuctVkKnTnDUWOpMQukqzcfk4fy7D93PwcfebLtDaAelYTxLpUAFaqCmZ8qFLsbgK7MP9c6Go0Ewp1RmSGXmBrU5pTLI_wDOsVvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395641707</pqid></control><display><type>article</type><title>Stochastically Perturbed Parameterizations in an HRRR-Based Ensemble</title><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>AMS Journals (Meteorology)</source><creator>Jankov, Isidora ; Beck, Jeffrey ; Wolff, Jamie ; Harrold, Michelle ; Olson, Joseph B. ; Smirnova, Tatiana ; Alexander, Curtis ; Berner, Judith</creator><creatorcontrib>Jankov, Isidora ; Beck, Jeffrey ; Wolff, Jamie ; Harrold, Michelle ; Olson, Joseph B. ; Smirnova, Tatiana ; Alexander, Curtis ; Berner, Judith</creatorcontrib><description>A stochastically perturbed parameterization (SPP) approach that spatially and temporally perturbs parameters and variables in the Mellor–Yamada–Nakanishi–Niino planetary boundary layer scheme (PBL) and introduces initialization perturbations to soil moisture in the Rapid Update Cycle land surface model was developed within the High-Resolution Rapid Refresh convection-allowing ensemble. This work is a follow-up study to a work performed using the Rapid Refresh (RAP)-based ensemble. In the present study, the SPP approach was used to target the performance of precipitation and low-level variables (e.g., 2-m temperature and dewpoint, and 10-m wind). The stochastic kinetic energy backscatter scheme and the stochastic perturbation of physics tendencies scheme were combined with the SPP approach and applied to the PBL to target upper-level variable performance (e.g., improved skill and reliability). The three stochastic experiments (SPP applied to PBL only, SPP applied to PBL combined with SKEB and SPPT, and stochastically perturbed soil moisture initial conditions) were compared to a mixed-physics ensemble. The results showed a positive impact from initial condition soil moisture perturbations on precipitation forecasts; however, it resulted in an increase in 2-m dewpoint RMSE. The experiment with perturbed parameters within the PBL showed an improvement in low-level wind forecasts for some verification metrics. The experiment that combined the three stochastic approaches together exhibited improved RMSE and spread for upper-level variables. Our study demonstrated that, by using the SPP approach, forecasts of specific variables can be improved. Also, the results showed that using a single-physics suite ensemble with stochastic methods is potentially an attractive alternative to using multiphysics for convection allowing ensembles.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-18-0092.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Backscatter ; Backscattering ; Boundary layers ; Convection ; Data assimilation ; Experiments ; General circulation models ; Horizontal integration ; Initial conditions ; Kinetic energy ; Land surface models ; Parameterization ; Parameters ; Perturbation ; Perturbations ; Physics ; Planetary boundary layer ; Precipitation ; Precipitation forecasting ; Simulation ; Soil ; Soil conditions ; Soil moisture ; Soils ; Stochastic methods ; Weather forecasting ; Wind</subject><ispartof>Monthly weather review, 2019-01, Vol.147 (1), p.153-173</ispartof><rights>Copyright American Meteorological Society Jan 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-d089cf6e7676a9788433d124e36a2bc005cdbeb7bcea1f485c43181d8960dcf83</citedby><cites>FETCH-LOGICAL-c310t-d089cf6e7676a9788433d124e36a2bc005cdbeb7bcea1f485c43181d8960dcf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Jankov, Isidora</creatorcontrib><creatorcontrib>Beck, Jeffrey</creatorcontrib><creatorcontrib>Wolff, Jamie</creatorcontrib><creatorcontrib>Harrold, Michelle</creatorcontrib><creatorcontrib>Olson, Joseph B.</creatorcontrib><creatorcontrib>Smirnova, Tatiana</creatorcontrib><creatorcontrib>Alexander, Curtis</creatorcontrib><creatorcontrib>Berner, Judith</creatorcontrib><title>Stochastically Perturbed Parameterizations in an HRRR-Based Ensemble</title><title>Monthly weather review</title><description>A stochastically perturbed parameterization (SPP) approach that spatially and temporally perturbs parameters and variables in the Mellor–Yamada–Nakanishi–Niino planetary boundary layer scheme (PBL) and introduces initialization perturbations to soil moisture in the Rapid Update Cycle land surface model was developed within the High-Resolution Rapid Refresh convection-allowing ensemble. This work is a follow-up study to a work performed using the Rapid Refresh (RAP)-based ensemble. In the present study, the SPP approach was used to target the performance of precipitation and low-level variables (e.g., 2-m temperature and dewpoint, and 10-m wind). The stochastic kinetic energy backscatter scheme and the stochastic perturbation of physics tendencies scheme were combined with the SPP approach and applied to the PBL to target upper-level variable performance (e.g., improved skill and reliability). The three stochastic experiments (SPP applied to PBL only, SPP applied to PBL combined with SKEB and SPPT, and stochastically perturbed soil moisture initial conditions) were compared to a mixed-physics ensemble. The results showed a positive impact from initial condition soil moisture perturbations on precipitation forecasts; however, it resulted in an increase in 2-m dewpoint RMSE. The experiment with perturbed parameters within the PBL showed an improvement in low-level wind forecasts for some verification metrics. The experiment that combined the three stochastic approaches together exhibited improved RMSE and spread for upper-level variables. Our study demonstrated that, by using the SPP approach, forecasts of specific variables can be improved. Also, the results showed that using a single-physics suite ensemble with stochastic methods is potentially an attractive alternative to using multiphysics for convection allowing ensembles.</description><subject>Backscatter</subject><subject>Backscattering</subject><subject>Boundary layers</subject><subject>Convection</subject><subject>Data assimilation</subject><subject>Experiments</subject><subject>General circulation models</subject><subject>Horizontal integration</subject><subject>Initial conditions</subject><subject>Kinetic energy</subject><subject>Land surface models</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Perturbation</subject><subject>Perturbations</subject><subject>Physics</subject><subject>Planetary boundary layer</subject><subject>Precipitation</subject><subject>Precipitation forecasting</subject><subject>Simulation</subject><subject>Soil</subject><subject>Soil conditions</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>Stochastic methods</subject><subject>Weather forecasting</subject><subject>Wind</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkM9LwzAYhoMoOKdnrwXP2b4vSZP0qPvhhImjKh5DmqbY0bUz6Q7zr7djnt7Lw_vAQ8g9wgRRpdPXr5zOKWoKkLEJXpARpgwoiIxfkhEAUxSkENfkJsYtAEgp2IjM3_vOfdvY1842zTHZ-NAfQuHLZGOD3fneh_rX9nXXxqRuE9smqzzP6ZONA7Joo98Vjb8lV5Vtor_73zH5XC4-Ziu6fnt-mT2uqeMIPS1BZ66SXkklbaa0FpyXyITn0rLCAaSuLHyhCuctVkKnTnDUWOpMQukqzcfk4fy7D93PwcfebLtDaAelYTxLpUAFaqCmZ8qFLsbgK7MP9c6Go0Ewp1RmSGXmBrU5pTLI_wDOsVvY</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Jankov, Isidora</creator><creator>Beck, Jeffrey</creator><creator>Wolff, Jamie</creator><creator>Harrold, Michelle</creator><creator>Olson, Joseph B.</creator><creator>Smirnova, Tatiana</creator><creator>Alexander, Curtis</creator><creator>Berner, Judith</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190101</creationdate><title>Stochastically Perturbed Parameterizations in an HRRR-Based Ensemble</title><author>Jankov, Isidora ; Beck, Jeffrey ; Wolff, Jamie ; Harrold, Michelle ; Olson, Joseph B. ; Smirnova, Tatiana ; Alexander, Curtis ; Berner, Judith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-d089cf6e7676a9788433d124e36a2bc005cdbeb7bcea1f485c43181d8960dcf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Backscatter</topic><topic>Backscattering</topic><topic>Boundary layers</topic><topic>Convection</topic><topic>Data assimilation</topic><topic>Experiments</topic><topic>General circulation models</topic><topic>Horizontal integration</topic><topic>Initial conditions</topic><topic>Kinetic energy</topic><topic>Land surface models</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Perturbation</topic><topic>Perturbations</topic><topic>Physics</topic><topic>Planetary boundary layer</topic><topic>Precipitation</topic><topic>Precipitation forecasting</topic><topic>Simulation</topic><topic>Soil</topic><topic>Soil conditions</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>Stochastic methods</topic><topic>Weather forecasting</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jankov, Isidora</creatorcontrib><creatorcontrib>Beck, Jeffrey</creatorcontrib><creatorcontrib>Wolff, Jamie</creatorcontrib><creatorcontrib>Harrold, Michelle</creatorcontrib><creatorcontrib>Olson, Joseph B.</creatorcontrib><creatorcontrib>Smirnova, Tatiana</creatorcontrib><creatorcontrib>Alexander, Curtis</creatorcontrib><creatorcontrib>Berner, Judith</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jankov, Isidora</au><au>Beck, Jeffrey</au><au>Wolff, Jamie</au><au>Harrold, Michelle</au><au>Olson, Joseph B.</au><au>Smirnova, Tatiana</au><au>Alexander, Curtis</au><au>Berner, Judith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastically Perturbed Parameterizations in an HRRR-Based Ensemble</atitle><jtitle>Monthly weather review</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>147</volume><issue>1</issue><spage>153</spage><epage>173</epage><pages>153-173</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>A stochastically perturbed parameterization (SPP) approach that spatially and temporally perturbs parameters and variables in the Mellor–Yamada–Nakanishi–Niino planetary boundary layer scheme (PBL) and introduces initialization perturbations to soil moisture in the Rapid Update Cycle land surface model was developed within the High-Resolution Rapid Refresh convection-allowing ensemble. This work is a follow-up study to a work performed using the Rapid Refresh (RAP)-based ensemble. In the present study, the SPP approach was used to target the performance of precipitation and low-level variables (e.g., 2-m temperature and dewpoint, and 10-m wind). The stochastic kinetic energy backscatter scheme and the stochastic perturbation of physics tendencies scheme were combined with the SPP approach and applied to the PBL to target upper-level variable performance (e.g., improved skill and reliability). The three stochastic experiments (SPP applied to PBL only, SPP applied to PBL combined with SKEB and SPPT, and stochastically perturbed soil moisture initial conditions) were compared to a mixed-physics ensemble. The results showed a positive impact from initial condition soil moisture perturbations on precipitation forecasts; however, it resulted in an increase in 2-m dewpoint RMSE. The experiment with perturbed parameters within the PBL showed an improvement in low-level wind forecasts for some verification metrics. The experiment that combined the three stochastic approaches together exhibited improved RMSE and spread for upper-level variables. Our study demonstrated that, by using the SPP approach, forecasts of specific variables can be improved. Also, the results showed that using a single-physics suite ensemble with stochastic methods is potentially an attractive alternative to using multiphysics for convection allowing ensembles.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-18-0092.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-0644 |
ispartof | Monthly weather review, 2019-01, Vol.147 (1), p.153-173 |
issn | 0027-0644 1520-0493 |
language | eng |
recordid | cdi_proquest_journals_2395641707 |
source | Alma/SFX Local Collection; EZB Electronic Journals Library; AMS Journals (Meteorology) |
subjects | Backscatter Backscattering Boundary layers Convection Data assimilation Experiments General circulation models Horizontal integration Initial conditions Kinetic energy Land surface models Parameterization Parameters Perturbation Perturbations Physics Planetary boundary layer Precipitation Precipitation forecasting Simulation Soil Soil conditions Soil moisture Soils Stochastic methods Weather forecasting Wind |
title | Stochastically Perturbed Parameterizations in an HRRR-Based Ensemble |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastically%20Perturbed%20Parameterizations%20in%20an%20HRRR-Based%20Ensemble&rft.jtitle=Monthly%20weather%20review&rft.au=Jankov,%20Isidora&rft.date=2019-01-01&rft.volume=147&rft.issue=1&rft.spage=153&rft.epage=173&rft.pages=153-173&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-18-0092.1&rft_dat=%3Cproquest_cross%3E2395641707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395641707&rft_id=info:pmid/&rfr_iscdi=true |