Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks

We perform a comprehensive numerical study of the effect of approximation-theoretical results for neural networks on practical learning problems in the context of numerical analysis. As the underlying model, we study the machine-learning-based solution of parametric partial differential equations. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-04
Hauptverfasser: Geist, Moritz, Petersen, Philipp, Raslan, Mones, Schneider, Reinhold, Kutyniok, Gitta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Geist, Moritz
Petersen, Philipp
Raslan, Mones
Schneider, Reinhold
Kutyniok, Gitta
description We perform a comprehensive numerical study of the effect of approximation-theoretical results for neural networks on practical learning problems in the context of numerical analysis. As the underlying model, we study the machine-learning-based solution of parametric partial differential equations. Here, approximation theory predicts that the performance of the model should depend only very mildly on the dimension of the parameter space and is determined by the intrinsic dimension of the solution manifold of the parametric partial differential equation. We use various methods to establish comparability between test-cases by minimizing the effect of the choice of test-cases on the optimization and sampling aspects of the learning problem. We find strong support for the hypothesis that approximation-theoretical effects heavily influence the practical behavior of learning problems in numerical analysis.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2395429302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395429302</sourcerecordid><originalsourceid>FETCH-proquest_journals_23954293023</originalsourceid><addsrcrecordid>eNqNy80KgkAUhuEhCJLyHg60FqYzWrlOo5UFtZcpzpCmjs4P0d1n0QW0-hbP-01YgEKsom2MOGOhtTXnHNcbTBIRsGPhWzLVTTZw1o13le5AK3B3gpM0siU3ImSVUt5-LB-8_EbXF2REPRTkzXguyD21edgFmyrZWAp_O2fLfX7ZHaLe6MGTdWWtvelGKlGkSYyp4Cj-q94ZXT6H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395429302</pqid></control><display><type>article</type><title>Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks</title><source>Free E- Journals</source><creator>Geist, Moritz ; Petersen, Philipp ; Raslan, Mones ; Schneider, Reinhold ; Kutyniok, Gitta</creator><creatorcontrib>Geist, Moritz ; Petersen, Philipp ; Raslan, Mones ; Schneider, Reinhold ; Kutyniok, Gitta</creatorcontrib><description>We perform a comprehensive numerical study of the effect of approximation-theoretical results for neural networks on practical learning problems in the context of numerical analysis. As the underlying model, we study the machine-learning-based solution of parametric partial differential equations. Here, approximation theory predicts that the performance of the model should depend only very mildly on the dimension of the parameter space and is determined by the intrinsic dimension of the solution manifold of the parametric partial differential equation. We use various methods to establish comparability between test-cases by minimizing the effect of the choice of test-cases on the optimization and sampling aspects of the learning problem. We find strong support for the hypothesis that approximation-theoretical effects heavily influence the practical behavior of learning problems in numerical analysis.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Artificial neural networks ; Machine learning ; Neural networks ; Numerical analysis ; Optimization ; Partial differential equations</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Geist, Moritz</creatorcontrib><creatorcontrib>Petersen, Philipp</creatorcontrib><creatorcontrib>Raslan, Mones</creatorcontrib><creatorcontrib>Schneider, Reinhold</creatorcontrib><creatorcontrib>Kutyniok, Gitta</creatorcontrib><title>Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks</title><title>arXiv.org</title><description>We perform a comprehensive numerical study of the effect of approximation-theoretical results for neural networks on practical learning problems in the context of numerical analysis. As the underlying model, we study the machine-learning-based solution of parametric partial differential equations. Here, approximation theory predicts that the performance of the model should depend only very mildly on the dimension of the parameter space and is determined by the intrinsic dimension of the solution manifold of the parametric partial differential equation. We use various methods to establish comparability between test-cases by minimizing the effect of the choice of test-cases on the optimization and sampling aspects of the learning problem. We find strong support for the hypothesis that approximation-theoretical effects heavily influence the practical behavior of learning problems in numerical analysis.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Partial differential equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy80KgkAUhuEhCJLyHg60FqYzWrlOo5UFtZcpzpCmjs4P0d1n0QW0-hbP-01YgEKsom2MOGOhtTXnHNcbTBIRsGPhWzLVTTZw1o13le5AK3B3gpM0siU3ImSVUt5-LB-8_EbXF2REPRTkzXguyD21edgFmyrZWAp_O2fLfX7ZHaLe6MGTdWWtvelGKlGkSYyp4Cj-q94ZXT6H</recordid><startdate>20200425</startdate><enddate>20200425</enddate><creator>Geist, Moritz</creator><creator>Petersen, Philipp</creator><creator>Raslan, Mones</creator><creator>Schneider, Reinhold</creator><creator>Kutyniok, Gitta</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200425</creationdate><title>Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks</title><author>Geist, Moritz ; Petersen, Philipp ; Raslan, Mones ; Schneider, Reinhold ; Kutyniok, Gitta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23954293023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Partial differential equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Geist, Moritz</creatorcontrib><creatorcontrib>Petersen, Philipp</creatorcontrib><creatorcontrib>Raslan, Mones</creatorcontrib><creatorcontrib>Schneider, Reinhold</creatorcontrib><creatorcontrib>Kutyniok, Gitta</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geist, Moritz</au><au>Petersen, Philipp</au><au>Raslan, Mones</au><au>Schneider, Reinhold</au><au>Kutyniok, Gitta</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2020-04-25</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We perform a comprehensive numerical study of the effect of approximation-theoretical results for neural networks on practical learning problems in the context of numerical analysis. As the underlying model, we study the machine-learning-based solution of parametric partial differential equations. Here, approximation theory predicts that the performance of the model should depend only very mildly on the dimension of the parameter space and is determined by the intrinsic dimension of the solution manifold of the parametric partial differential equation. We use various methods to establish comparability between test-cases by minimizing the effect of the choice of test-cases on the optimization and sampling aspects of the learning problem. We find strong support for the hypothesis that approximation-theoretical effects heavily influence the practical behavior of learning problems in numerical analysis.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2395429302
source Free E- Journals
subjects Approximation
Artificial neural networks
Machine learning
Neural networks
Numerical analysis
Optimization
Partial differential equations
title Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Numerical%20Solution%20of%20the%20Parametric%20Diffusion%20Equation%20by%20Deep%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Geist,%20Moritz&rft.date=2020-04-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2395429302%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395429302&rft_id=info:pmid/&rfr_iscdi=true