Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds

The search for life on exoplanets is one of the grand scientific challenges of our time. The strategy to date has been to find (e.g., through transit surveys like Kepler) earthlike exoplanets in their stars' habitable zone, then use transmission spectroscopy to measure biosignature gases, espec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-04, Vol.893 (2), p.163
Hauptverfasser: Glaser, Donald M, Hartnett, Hilairy Ellen, Desch, Steven J, Unterborn, Cayman T, Anbar, Ariel, Buessecker, Steffen, Fisher, Theresa, Glaser, Steven, Kane, Stephen R, Lisse, Carey M, Millsaps, Camerian, Neuer, Susanne, O'Rourke, Joseph G, Santos, Nuno, Walker, Sara Imari, Zolotov, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 163
container_title The Astrophysical journal
container_volume 893
creator Glaser, Donald M
Hartnett, Hilairy Ellen
Desch, Steven J
Unterborn, Cayman T
Anbar, Ariel
Buessecker, Steffen
Fisher, Theresa
Glaser, Steven
Kane, Stephen R
Lisse, Carey M
Millsaps, Camerian
Neuer, Susanne
O'Rourke, Joseph G
Santos, Nuno
Walker, Sara Imari
Zolotov, Mikhail
description The search for life on exoplanets is one of the grand scientific challenges of our time. The strategy to date has been to find (e.g., through transit surveys like Kepler) earthlike exoplanets in their stars' habitable zone, then use transmission spectroscopy to measure biosignature gases, especially oxygen, in the planets' atmospheres (e.g., using James Webb Space Telescope (JWST)). Already there are more such planets than can be observed by JWST, and missions like the Transiting Exoplanet Survey Satellite and others will find more. A better understanding of the geochemical cycles relevant to biosignature gases is needed, to prioritize targets for costly follow-up observations and to help design future missions. We define a Detectability Index to quantify the likelihood that a biosignature gas could be assigned a biological versus nonbiological origin. We apply this index to the case of oxygen gas, O2, on earthlike planets with varying water contents. We demonstrate that on earthlike exoplanets with 0.2 weight percent (wt%) water (i.e., no exposed continents) a reduced flux of bioessential phosphorus limits the export of photosynthetically produced atmospheric O2 to levels indistinguishable from geophysical production by photolysis of water plus hydrogen escape. Higher water contents >1 wt% that lead to high-pressure ice mantles further slow phosphorus cycling. Paradoxically, the maximum water content allowing use of O2 as a biosignature, 0.2 wt%, is consistent with no water based on mass and radius. Thus, the utility of an O2 biosignature likely requires the direct detection of both water and land on a planet.
doi_str_mv 10.3847/1538-4357/ab822d
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2395329465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395329465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-478ea0fd089cdd4c16b68d21577bdf1b280026e9f62336231660bd9c744240573</originalsourceid><addsrcrecordid>eNp1kMtLAzEQh4MoWB93jwHx5tq8No-jVKtCoT1Y6i1kN0nZsu6uSQr2v3eXFb3oYRhm-OY38AFwhdEdlUxMcU5lxmgupqaQhNgjMPlZHYMJQohlnIq3U3AW424YiVITMH9wyZXJFFVdpQNsPVxU3sF1rJotXH4etq6BbQNXrjbbqoSr2jQuRWgaCzcmuQA3bahtvAAn3tTRXX73c7CeP77OnrPF8ulldr_ISsZ4ypiQziBvkVSltazEvODSEpwLUViPCyIRItwpzwmlfWHOUWFVKRgjDOWCnoPrMbcL7cfexaR37T40_UtNqMopUYznPYVGqgxtjMF53YXq3YSDxkgPtvSgRg9q9GirP7kZT6q2-8003U5LRTXRmFPdWd9zt39w_8Z-AXrsdfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395329465</pqid></control><display><type>article</type><title>Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Glaser, Donald M ; Hartnett, Hilairy Ellen ; Desch, Steven J ; Unterborn, Cayman T ; Anbar, Ariel ; Buessecker, Steffen ; Fisher, Theresa ; Glaser, Steven ; Kane, Stephen R ; Lisse, Carey M ; Millsaps, Camerian ; Neuer, Susanne ; O'Rourke, Joseph G ; Santos, Nuno ; Walker, Sara Imari ; Zolotov, Mikhail</creator><creatorcontrib>Glaser, Donald M ; Hartnett, Hilairy Ellen ; Desch, Steven J ; Unterborn, Cayman T ; Anbar, Ariel ; Buessecker, Steffen ; Fisher, Theresa ; Glaser, Steven ; Kane, Stephen R ; Lisse, Carey M ; Millsaps, Camerian ; Neuer, Susanne ; O'Rourke, Joseph G ; Santos, Nuno ; Walker, Sara Imari ; Zolotov, Mikhail</creatorcontrib><description>The search for life on exoplanets is one of the grand scientific challenges of our time. The strategy to date has been to find (e.g., through transit surveys like Kepler) earthlike exoplanets in their stars' habitable zone, then use transmission spectroscopy to measure biosignature gases, especially oxygen, in the planets' atmospheres (e.g., using James Webb Space Telescope (JWST)). Already there are more such planets than can be observed by JWST, and missions like the Transiting Exoplanet Survey Satellite and others will find more. A better understanding of the geochemical cycles relevant to biosignature gases is needed, to prioritize targets for costly follow-up observations and to help design future missions. We define a Detectability Index to quantify the likelihood that a biosignature gas could be assigned a biological versus nonbiological origin. We apply this index to the case of oxygen gas, O2, on earthlike planets with varying water contents. We demonstrate that on earthlike exoplanets with 0.2 weight percent (wt%) water (i.e., no exposed continents) a reduced flux of bioessential phosphorus limits the export of photosynthetically produced atmospheric O2 to levels indistinguishable from geophysical production by photolysis of water plus hydrogen escape. Higher water contents &gt;1 wt% that lead to high-pressure ice mantles further slow phosphorus cycling. Paradoxically, the maximum water content allowing use of O2 as a biosignature, 0.2 wt%, is consistent with no water based on mass and radius. Thus, the utility of an O2 biosignature likely requires the direct detection of both water and land on a planet.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab822d</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrobiology ; Astrophysics ; Biomarkers ; Biosignatures ; Circumstellar habitable zone ; Earth mantle ; Exoplanets ; Extrasolar planets ; Gases ; Geochemical cycles ; Habitable planets ; Hydrogen ; James Webb Space Telescope ; Missions ; Moisture content ; Ocean planets ; Oxygen ; Phosphorus ; Photolysis ; Planet detection ; Planetary atmospheres ; Planetary mantles ; Planets ; Polls &amp; surveys ; Pressure ice ; Satellites ; Space telescopes ; Spectroscopy ; Terrestrial planets ; Transit ; Water content</subject><ispartof>The Astrophysical journal, 2020-04, Vol.893 (2), p.163</ispartof><rights>2020. The Author(s). Published by the American Astronomical Society.</rights><rights>Copyright IOP Publishing Apr 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-478ea0fd089cdd4c16b68d21577bdf1b280026e9f62336231660bd9c744240573</citedby><cites>FETCH-LOGICAL-c446t-478ea0fd089cdd4c16b68d21577bdf1b280026e9f62336231660bd9c744240573</cites><orcidid>0000-0002-4579-3628 ; 0000-0002-1571-0836 ; 0000-0002-1180-996X ; 0000-0002-1150-4605 ; 0000-0002-7084-0529 ; 0000-0002-9548-1526 ; 0000-0001-8991-3110 ; 0000-0003-0736-7844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab822d/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Glaser, Donald M</creatorcontrib><creatorcontrib>Hartnett, Hilairy Ellen</creatorcontrib><creatorcontrib>Desch, Steven J</creatorcontrib><creatorcontrib>Unterborn, Cayman T</creatorcontrib><creatorcontrib>Anbar, Ariel</creatorcontrib><creatorcontrib>Buessecker, Steffen</creatorcontrib><creatorcontrib>Fisher, Theresa</creatorcontrib><creatorcontrib>Glaser, Steven</creatorcontrib><creatorcontrib>Kane, Stephen R</creatorcontrib><creatorcontrib>Lisse, Carey M</creatorcontrib><creatorcontrib>Millsaps, Camerian</creatorcontrib><creatorcontrib>Neuer, Susanne</creatorcontrib><creatorcontrib>O'Rourke, Joseph G</creatorcontrib><creatorcontrib>Santos, Nuno</creatorcontrib><creatorcontrib>Walker, Sara Imari</creatorcontrib><creatorcontrib>Zolotov, Mikhail</creatorcontrib><title>Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The search for life on exoplanets is one of the grand scientific challenges of our time. The strategy to date has been to find (e.g., through transit surveys like Kepler) earthlike exoplanets in their stars' habitable zone, then use transmission spectroscopy to measure biosignature gases, especially oxygen, in the planets' atmospheres (e.g., using James Webb Space Telescope (JWST)). Already there are more such planets than can be observed by JWST, and missions like the Transiting Exoplanet Survey Satellite and others will find more. A better understanding of the geochemical cycles relevant to biosignature gases is needed, to prioritize targets for costly follow-up observations and to help design future missions. We define a Detectability Index to quantify the likelihood that a biosignature gas could be assigned a biological versus nonbiological origin. We apply this index to the case of oxygen gas, O2, on earthlike planets with varying water contents. We demonstrate that on earthlike exoplanets with 0.2 weight percent (wt%) water (i.e., no exposed continents) a reduced flux of bioessential phosphorus limits the export of photosynthetically produced atmospheric O2 to levels indistinguishable from geophysical production by photolysis of water plus hydrogen escape. Higher water contents &gt;1 wt% that lead to high-pressure ice mantles further slow phosphorus cycling. Paradoxically, the maximum water content allowing use of O2 as a biosignature, 0.2 wt%, is consistent with no water based on mass and radius. Thus, the utility of an O2 biosignature likely requires the direct detection of both water and land on a planet.</description><subject>Astrobiology</subject><subject>Astrophysics</subject><subject>Biomarkers</subject><subject>Biosignatures</subject><subject>Circumstellar habitable zone</subject><subject>Earth mantle</subject><subject>Exoplanets</subject><subject>Extrasolar planets</subject><subject>Gases</subject><subject>Geochemical cycles</subject><subject>Habitable planets</subject><subject>Hydrogen</subject><subject>James Webb Space Telescope</subject><subject>Missions</subject><subject>Moisture content</subject><subject>Ocean planets</subject><subject>Oxygen</subject><subject>Phosphorus</subject><subject>Photolysis</subject><subject>Planet detection</subject><subject>Planetary atmospheres</subject><subject>Planetary mantles</subject><subject>Planets</subject><subject>Polls &amp; surveys</subject><subject>Pressure ice</subject><subject>Satellites</subject><subject>Space telescopes</subject><subject>Spectroscopy</subject><subject>Terrestrial planets</subject><subject>Transit</subject><subject>Water content</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kMtLAzEQh4MoWB93jwHx5tq8No-jVKtCoT1Y6i1kN0nZsu6uSQr2v3eXFb3oYRhm-OY38AFwhdEdlUxMcU5lxmgupqaQhNgjMPlZHYMJQohlnIq3U3AW424YiVITMH9wyZXJFFVdpQNsPVxU3sF1rJotXH4etq6BbQNXrjbbqoSr2jQuRWgaCzcmuQA3bahtvAAn3tTRXX73c7CeP77OnrPF8ulldr_ISsZ4ypiQziBvkVSltazEvODSEpwLUViPCyIRItwpzwmlfWHOUWFVKRgjDOWCnoPrMbcL7cfexaR37T40_UtNqMopUYznPYVGqgxtjMF53YXq3YSDxkgPtvSgRg9q9GirP7kZT6q2-8003U5LRTXRmFPdWd9zt39w_8Z-AXrsdfA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Glaser, Donald M</creator><creator>Hartnett, Hilairy Ellen</creator><creator>Desch, Steven J</creator><creator>Unterborn, Cayman T</creator><creator>Anbar, Ariel</creator><creator>Buessecker, Steffen</creator><creator>Fisher, Theresa</creator><creator>Glaser, Steven</creator><creator>Kane, Stephen R</creator><creator>Lisse, Carey M</creator><creator>Millsaps, Camerian</creator><creator>Neuer, Susanne</creator><creator>O'Rourke, Joseph G</creator><creator>Santos, Nuno</creator><creator>Walker, Sara Imari</creator><creator>Zolotov, Mikhail</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4579-3628</orcidid><orcidid>https://orcid.org/0000-0002-1571-0836</orcidid><orcidid>https://orcid.org/0000-0002-1180-996X</orcidid><orcidid>https://orcid.org/0000-0002-1150-4605</orcidid><orcidid>https://orcid.org/0000-0002-7084-0529</orcidid><orcidid>https://orcid.org/0000-0002-9548-1526</orcidid><orcidid>https://orcid.org/0000-0001-8991-3110</orcidid><orcidid>https://orcid.org/0000-0003-0736-7844</orcidid></search><sort><creationdate>20200401</creationdate><title>Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds</title><author>Glaser, Donald M ; Hartnett, Hilairy Ellen ; Desch, Steven J ; Unterborn, Cayman T ; Anbar, Ariel ; Buessecker, Steffen ; Fisher, Theresa ; Glaser, Steven ; Kane, Stephen R ; Lisse, Carey M ; Millsaps, Camerian ; Neuer, Susanne ; O'Rourke, Joseph G ; Santos, Nuno ; Walker, Sara Imari ; Zolotov, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-478ea0fd089cdd4c16b68d21577bdf1b280026e9f62336231660bd9c744240573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrobiology</topic><topic>Astrophysics</topic><topic>Biomarkers</topic><topic>Biosignatures</topic><topic>Circumstellar habitable zone</topic><topic>Earth mantle</topic><topic>Exoplanets</topic><topic>Extrasolar planets</topic><topic>Gases</topic><topic>Geochemical cycles</topic><topic>Habitable planets</topic><topic>Hydrogen</topic><topic>James Webb Space Telescope</topic><topic>Missions</topic><topic>Moisture content</topic><topic>Ocean planets</topic><topic>Oxygen</topic><topic>Phosphorus</topic><topic>Photolysis</topic><topic>Planet detection</topic><topic>Planetary atmospheres</topic><topic>Planetary mantles</topic><topic>Planets</topic><topic>Polls &amp; surveys</topic><topic>Pressure ice</topic><topic>Satellites</topic><topic>Space telescopes</topic><topic>Spectroscopy</topic><topic>Terrestrial planets</topic><topic>Transit</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glaser, Donald M</creatorcontrib><creatorcontrib>Hartnett, Hilairy Ellen</creatorcontrib><creatorcontrib>Desch, Steven J</creatorcontrib><creatorcontrib>Unterborn, Cayman T</creatorcontrib><creatorcontrib>Anbar, Ariel</creatorcontrib><creatorcontrib>Buessecker, Steffen</creatorcontrib><creatorcontrib>Fisher, Theresa</creatorcontrib><creatorcontrib>Glaser, Steven</creatorcontrib><creatorcontrib>Kane, Stephen R</creatorcontrib><creatorcontrib>Lisse, Carey M</creatorcontrib><creatorcontrib>Millsaps, Camerian</creatorcontrib><creatorcontrib>Neuer, Susanne</creatorcontrib><creatorcontrib>O'Rourke, Joseph G</creatorcontrib><creatorcontrib>Santos, Nuno</creatorcontrib><creatorcontrib>Walker, Sara Imari</creatorcontrib><creatorcontrib>Zolotov, Mikhail</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glaser, Donald M</au><au>Hartnett, Hilairy Ellen</au><au>Desch, Steven J</au><au>Unterborn, Cayman T</au><au>Anbar, Ariel</au><au>Buessecker, Steffen</au><au>Fisher, Theresa</au><au>Glaser, Steven</au><au>Kane, Stephen R</au><au>Lisse, Carey M</au><au>Millsaps, Camerian</au><au>Neuer, Susanne</au><au>O'Rourke, Joseph G</au><au>Santos, Nuno</au><au>Walker, Sara Imari</au><au>Zolotov, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>893</volume><issue>2</issue><spage>163</spage><pages>163-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The search for life on exoplanets is one of the grand scientific challenges of our time. The strategy to date has been to find (e.g., through transit surveys like Kepler) earthlike exoplanets in their stars' habitable zone, then use transmission spectroscopy to measure biosignature gases, especially oxygen, in the planets' atmospheres (e.g., using James Webb Space Telescope (JWST)). Already there are more such planets than can be observed by JWST, and missions like the Transiting Exoplanet Survey Satellite and others will find more. A better understanding of the geochemical cycles relevant to biosignature gases is needed, to prioritize targets for costly follow-up observations and to help design future missions. We define a Detectability Index to quantify the likelihood that a biosignature gas could be assigned a biological versus nonbiological origin. We apply this index to the case of oxygen gas, O2, on earthlike planets with varying water contents. We demonstrate that on earthlike exoplanets with 0.2 weight percent (wt%) water (i.e., no exposed continents) a reduced flux of bioessential phosphorus limits the export of photosynthetically produced atmospheric O2 to levels indistinguishable from geophysical production by photolysis of water plus hydrogen escape. Higher water contents &gt;1 wt% that lead to high-pressure ice mantles further slow phosphorus cycling. Paradoxically, the maximum water content allowing use of O2 as a biosignature, 0.2 wt%, is consistent with no water based on mass and radius. Thus, the utility of an O2 biosignature likely requires the direct detection of both water and land on a planet.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab822d</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4579-3628</orcidid><orcidid>https://orcid.org/0000-0002-1571-0836</orcidid><orcidid>https://orcid.org/0000-0002-1180-996X</orcidid><orcidid>https://orcid.org/0000-0002-1150-4605</orcidid><orcidid>https://orcid.org/0000-0002-7084-0529</orcidid><orcidid>https://orcid.org/0000-0002-9548-1526</orcidid><orcidid>https://orcid.org/0000-0001-8991-3110</orcidid><orcidid>https://orcid.org/0000-0003-0736-7844</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-04, Vol.893 (2), p.163
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2395329465
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Astrobiology
Astrophysics
Biomarkers
Biosignatures
Circumstellar habitable zone
Earth mantle
Exoplanets
Extrasolar planets
Gases
Geochemical cycles
Habitable planets
Hydrogen
James Webb Space Telescope
Missions
Moisture content
Ocean planets
Oxygen
Phosphorus
Photolysis
Planet detection
Planetary atmospheres
Planetary mantles
Planets
Polls & surveys
Pressure ice
Satellites
Space telescopes
Spectroscopy
Terrestrial planets
Transit
Water content
title Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detectability%20of%20Life%20Using%20Oxygen%20on%20Pelagic%20Planets%20and%20Water%20Worlds&rft.jtitle=The%20Astrophysical%20journal&rft.au=Glaser,%20Donald%20M&rft.date=2020-04-01&rft.volume=893&rft.issue=2&rft.spage=163&rft.pages=163-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab822d&rft_dat=%3Cproquest_iop_j%3E2395329465%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395329465&rft_id=info:pmid/&rfr_iscdi=true