Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds
The search for life on exoplanets is one of the grand scientific challenges of our time. The strategy to date has been to find (e.g., through transit surveys like Kepler) earthlike exoplanets in their stars' habitable zone, then use transmission spectroscopy to measure biosignature gases, espec...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-04, Vol.893 (2), p.163 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 163 |
container_title | The Astrophysical journal |
container_volume | 893 |
creator | Glaser, Donald M Hartnett, Hilairy Ellen Desch, Steven J Unterborn, Cayman T Anbar, Ariel Buessecker, Steffen Fisher, Theresa Glaser, Steven Kane, Stephen R Lisse, Carey M Millsaps, Camerian Neuer, Susanne O'Rourke, Joseph G Santos, Nuno Walker, Sara Imari Zolotov, Mikhail |
description | The search for life on exoplanets is one of the grand scientific challenges of our time. The strategy to date has been to find (e.g., through transit surveys like Kepler) earthlike exoplanets in their stars' habitable zone, then use transmission spectroscopy to measure biosignature gases, especially oxygen, in the planets' atmospheres (e.g., using James Webb Space Telescope (JWST)). Already there are more such planets than can be observed by JWST, and missions like the Transiting Exoplanet Survey Satellite and others will find more. A better understanding of the geochemical cycles relevant to biosignature gases is needed, to prioritize targets for costly follow-up observations and to help design future missions. We define a Detectability Index to quantify the likelihood that a biosignature gas could be assigned a biological versus nonbiological origin. We apply this index to the case of oxygen gas, O2, on earthlike planets with varying water contents. We demonstrate that on earthlike exoplanets with 0.2 weight percent (wt%) water (i.e., no exposed continents) a reduced flux of bioessential phosphorus limits the export of photosynthetically produced atmospheric O2 to levels indistinguishable from geophysical production by photolysis of water plus hydrogen escape. Higher water contents >1 wt% that lead to high-pressure ice mantles further slow phosphorus cycling. Paradoxically, the maximum water content allowing use of O2 as a biosignature, 0.2 wt%, is consistent with no water based on mass and radius. Thus, the utility of an O2 biosignature likely requires the direct detection of both water and land on a planet. |
doi_str_mv | 10.3847/1538-4357/ab822d |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2395329465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395329465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-478ea0fd089cdd4c16b68d21577bdf1b280026e9f62336231660bd9c744240573</originalsourceid><addsrcrecordid>eNp1kMtLAzEQh4MoWB93jwHx5tq8No-jVKtCoT1Y6i1kN0nZsu6uSQr2v3eXFb3oYRhm-OY38AFwhdEdlUxMcU5lxmgupqaQhNgjMPlZHYMJQohlnIq3U3AW424YiVITMH9wyZXJFFVdpQNsPVxU3sF1rJotXH4etq6BbQNXrjbbqoSr2jQuRWgaCzcmuQA3bahtvAAn3tTRXX73c7CeP77OnrPF8ulldr_ISsZ4ypiQziBvkVSltazEvODSEpwLUViPCyIRItwpzwmlfWHOUWFVKRgjDOWCnoPrMbcL7cfexaR37T40_UtNqMopUYznPYVGqgxtjMF53YXq3YSDxkgPtvSgRg9q9GirP7kZT6q2-8003U5LRTXRmFPdWd9zt39w_8Z-AXrsdfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395329465</pqid></control><display><type>article</type><title>Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Glaser, Donald M ; Hartnett, Hilairy Ellen ; Desch, Steven J ; Unterborn, Cayman T ; Anbar, Ariel ; Buessecker, Steffen ; Fisher, Theresa ; Glaser, Steven ; Kane, Stephen R ; Lisse, Carey M ; Millsaps, Camerian ; Neuer, Susanne ; O'Rourke, Joseph G ; Santos, Nuno ; Walker, Sara Imari ; Zolotov, Mikhail</creator><creatorcontrib>Glaser, Donald M ; Hartnett, Hilairy Ellen ; Desch, Steven J ; Unterborn, Cayman T ; Anbar, Ariel ; Buessecker, Steffen ; Fisher, Theresa ; Glaser, Steven ; Kane, Stephen R ; Lisse, Carey M ; Millsaps, Camerian ; Neuer, Susanne ; O'Rourke, Joseph G ; Santos, Nuno ; Walker, Sara Imari ; Zolotov, Mikhail</creatorcontrib><description>The search for life on exoplanets is one of the grand scientific challenges of our time. The strategy to date has been to find (e.g., through transit surveys like Kepler) earthlike exoplanets in their stars' habitable zone, then use transmission spectroscopy to measure biosignature gases, especially oxygen, in the planets' atmospheres (e.g., using James Webb Space Telescope (JWST)). Already there are more such planets than can be observed by JWST, and missions like the Transiting Exoplanet Survey Satellite and others will find more. A better understanding of the geochemical cycles relevant to biosignature gases is needed, to prioritize targets for costly follow-up observations and to help design future missions. We define a Detectability Index to quantify the likelihood that a biosignature gas could be assigned a biological versus nonbiological origin. We apply this index to the case of oxygen gas, O2, on earthlike planets with varying water contents. We demonstrate that on earthlike exoplanets with 0.2 weight percent (wt%) water (i.e., no exposed continents) a reduced flux of bioessential phosphorus limits the export of photosynthetically produced atmospheric O2 to levels indistinguishable from geophysical production by photolysis of water plus hydrogen escape. Higher water contents >1 wt% that lead to high-pressure ice mantles further slow phosphorus cycling. Paradoxically, the maximum water content allowing use of O2 as a biosignature, 0.2 wt%, is consistent with no water based on mass and radius. Thus, the utility of an O2 biosignature likely requires the direct detection of both water and land on a planet.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab822d</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrobiology ; Astrophysics ; Biomarkers ; Biosignatures ; Circumstellar habitable zone ; Earth mantle ; Exoplanets ; Extrasolar planets ; Gases ; Geochemical cycles ; Habitable planets ; Hydrogen ; James Webb Space Telescope ; Missions ; Moisture content ; Ocean planets ; Oxygen ; Phosphorus ; Photolysis ; Planet detection ; Planetary atmospheres ; Planetary mantles ; Planets ; Polls & surveys ; Pressure ice ; Satellites ; Space telescopes ; Spectroscopy ; Terrestrial planets ; Transit ; Water content</subject><ispartof>The Astrophysical journal, 2020-04, Vol.893 (2), p.163</ispartof><rights>2020. The Author(s). Published by the American Astronomical Society.</rights><rights>Copyright IOP Publishing Apr 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-478ea0fd089cdd4c16b68d21577bdf1b280026e9f62336231660bd9c744240573</citedby><cites>FETCH-LOGICAL-c446t-478ea0fd089cdd4c16b68d21577bdf1b280026e9f62336231660bd9c744240573</cites><orcidid>0000-0002-4579-3628 ; 0000-0002-1571-0836 ; 0000-0002-1180-996X ; 0000-0002-1150-4605 ; 0000-0002-7084-0529 ; 0000-0002-9548-1526 ; 0000-0001-8991-3110 ; 0000-0003-0736-7844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab822d/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Glaser, Donald M</creatorcontrib><creatorcontrib>Hartnett, Hilairy Ellen</creatorcontrib><creatorcontrib>Desch, Steven J</creatorcontrib><creatorcontrib>Unterborn, Cayman T</creatorcontrib><creatorcontrib>Anbar, Ariel</creatorcontrib><creatorcontrib>Buessecker, Steffen</creatorcontrib><creatorcontrib>Fisher, Theresa</creatorcontrib><creatorcontrib>Glaser, Steven</creatorcontrib><creatorcontrib>Kane, Stephen R</creatorcontrib><creatorcontrib>Lisse, Carey M</creatorcontrib><creatorcontrib>Millsaps, Camerian</creatorcontrib><creatorcontrib>Neuer, Susanne</creatorcontrib><creatorcontrib>O'Rourke, Joseph G</creatorcontrib><creatorcontrib>Santos, Nuno</creatorcontrib><creatorcontrib>Walker, Sara Imari</creatorcontrib><creatorcontrib>Zolotov, Mikhail</creatorcontrib><title>Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The search for life on exoplanets is one of the grand scientific challenges of our time. The strategy to date has been to find (e.g., through transit surveys like Kepler) earthlike exoplanets in their stars' habitable zone, then use transmission spectroscopy to measure biosignature gases, especially oxygen, in the planets' atmospheres (e.g., using James Webb Space Telescope (JWST)). Already there are more such planets than can be observed by JWST, and missions like the Transiting Exoplanet Survey Satellite and others will find more. A better understanding of the geochemical cycles relevant to biosignature gases is needed, to prioritize targets for costly follow-up observations and to help design future missions. We define a Detectability Index to quantify the likelihood that a biosignature gas could be assigned a biological versus nonbiological origin. We apply this index to the case of oxygen gas, O2, on earthlike planets with varying water contents. We demonstrate that on earthlike exoplanets with 0.2 weight percent (wt%) water (i.e., no exposed continents) a reduced flux of bioessential phosphorus limits the export of photosynthetically produced atmospheric O2 to levels indistinguishable from geophysical production by photolysis of water plus hydrogen escape. Higher water contents >1 wt% that lead to high-pressure ice mantles further slow phosphorus cycling. Paradoxically, the maximum water content allowing use of O2 as a biosignature, 0.2 wt%, is consistent with no water based on mass and radius. Thus, the utility of an O2 biosignature likely requires the direct detection of both water and land on a planet.</description><subject>Astrobiology</subject><subject>Astrophysics</subject><subject>Biomarkers</subject><subject>Biosignatures</subject><subject>Circumstellar habitable zone</subject><subject>Earth mantle</subject><subject>Exoplanets</subject><subject>Extrasolar planets</subject><subject>Gases</subject><subject>Geochemical cycles</subject><subject>Habitable planets</subject><subject>Hydrogen</subject><subject>James Webb Space Telescope</subject><subject>Missions</subject><subject>Moisture content</subject><subject>Ocean planets</subject><subject>Oxygen</subject><subject>Phosphorus</subject><subject>Photolysis</subject><subject>Planet detection</subject><subject>Planetary atmospheres</subject><subject>Planetary mantles</subject><subject>Planets</subject><subject>Polls & surveys</subject><subject>Pressure ice</subject><subject>Satellites</subject><subject>Space telescopes</subject><subject>Spectroscopy</subject><subject>Terrestrial planets</subject><subject>Transit</subject><subject>Water content</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kMtLAzEQh4MoWB93jwHx5tq8No-jVKtCoT1Y6i1kN0nZsu6uSQr2v3eXFb3oYRhm-OY38AFwhdEdlUxMcU5lxmgupqaQhNgjMPlZHYMJQohlnIq3U3AW424YiVITMH9wyZXJFFVdpQNsPVxU3sF1rJotXH4etq6BbQNXrjbbqoSr2jQuRWgaCzcmuQA3bahtvAAn3tTRXX73c7CeP77OnrPF8ulldr_ISsZ4ypiQziBvkVSltazEvODSEpwLUViPCyIRItwpzwmlfWHOUWFVKRgjDOWCnoPrMbcL7cfexaR37T40_UtNqMopUYznPYVGqgxtjMF53YXq3YSDxkgPtvSgRg9q9GirP7kZT6q2-8003U5LRTXRmFPdWd9zt39w_8Z-AXrsdfA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Glaser, Donald M</creator><creator>Hartnett, Hilairy Ellen</creator><creator>Desch, Steven J</creator><creator>Unterborn, Cayman T</creator><creator>Anbar, Ariel</creator><creator>Buessecker, Steffen</creator><creator>Fisher, Theresa</creator><creator>Glaser, Steven</creator><creator>Kane, Stephen R</creator><creator>Lisse, Carey M</creator><creator>Millsaps, Camerian</creator><creator>Neuer, Susanne</creator><creator>O'Rourke, Joseph G</creator><creator>Santos, Nuno</creator><creator>Walker, Sara Imari</creator><creator>Zolotov, Mikhail</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4579-3628</orcidid><orcidid>https://orcid.org/0000-0002-1571-0836</orcidid><orcidid>https://orcid.org/0000-0002-1180-996X</orcidid><orcidid>https://orcid.org/0000-0002-1150-4605</orcidid><orcidid>https://orcid.org/0000-0002-7084-0529</orcidid><orcidid>https://orcid.org/0000-0002-9548-1526</orcidid><orcidid>https://orcid.org/0000-0001-8991-3110</orcidid><orcidid>https://orcid.org/0000-0003-0736-7844</orcidid></search><sort><creationdate>20200401</creationdate><title>Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds</title><author>Glaser, Donald M ; Hartnett, Hilairy Ellen ; Desch, Steven J ; Unterborn, Cayman T ; Anbar, Ariel ; Buessecker, Steffen ; Fisher, Theresa ; Glaser, Steven ; Kane, Stephen R ; Lisse, Carey M ; Millsaps, Camerian ; Neuer, Susanne ; O'Rourke, Joseph G ; Santos, Nuno ; Walker, Sara Imari ; Zolotov, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-478ea0fd089cdd4c16b68d21577bdf1b280026e9f62336231660bd9c744240573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrobiology</topic><topic>Astrophysics</topic><topic>Biomarkers</topic><topic>Biosignatures</topic><topic>Circumstellar habitable zone</topic><topic>Earth mantle</topic><topic>Exoplanets</topic><topic>Extrasolar planets</topic><topic>Gases</topic><topic>Geochemical cycles</topic><topic>Habitable planets</topic><topic>Hydrogen</topic><topic>James Webb Space Telescope</topic><topic>Missions</topic><topic>Moisture content</topic><topic>Ocean planets</topic><topic>Oxygen</topic><topic>Phosphorus</topic><topic>Photolysis</topic><topic>Planet detection</topic><topic>Planetary atmospheres</topic><topic>Planetary mantles</topic><topic>Planets</topic><topic>Polls & surveys</topic><topic>Pressure ice</topic><topic>Satellites</topic><topic>Space telescopes</topic><topic>Spectroscopy</topic><topic>Terrestrial planets</topic><topic>Transit</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glaser, Donald M</creatorcontrib><creatorcontrib>Hartnett, Hilairy Ellen</creatorcontrib><creatorcontrib>Desch, Steven J</creatorcontrib><creatorcontrib>Unterborn, Cayman T</creatorcontrib><creatorcontrib>Anbar, Ariel</creatorcontrib><creatorcontrib>Buessecker, Steffen</creatorcontrib><creatorcontrib>Fisher, Theresa</creatorcontrib><creatorcontrib>Glaser, Steven</creatorcontrib><creatorcontrib>Kane, Stephen R</creatorcontrib><creatorcontrib>Lisse, Carey M</creatorcontrib><creatorcontrib>Millsaps, Camerian</creatorcontrib><creatorcontrib>Neuer, Susanne</creatorcontrib><creatorcontrib>O'Rourke, Joseph G</creatorcontrib><creatorcontrib>Santos, Nuno</creatorcontrib><creatorcontrib>Walker, Sara Imari</creatorcontrib><creatorcontrib>Zolotov, Mikhail</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glaser, Donald M</au><au>Hartnett, Hilairy Ellen</au><au>Desch, Steven J</au><au>Unterborn, Cayman T</au><au>Anbar, Ariel</au><au>Buessecker, Steffen</au><au>Fisher, Theresa</au><au>Glaser, Steven</au><au>Kane, Stephen R</au><au>Lisse, Carey M</au><au>Millsaps, Camerian</au><au>Neuer, Susanne</au><au>O'Rourke, Joseph G</au><au>Santos, Nuno</au><au>Walker, Sara Imari</au><au>Zolotov, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>893</volume><issue>2</issue><spage>163</spage><pages>163-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The search for life on exoplanets is one of the grand scientific challenges of our time. The strategy to date has been to find (e.g., through transit surveys like Kepler) earthlike exoplanets in their stars' habitable zone, then use transmission spectroscopy to measure biosignature gases, especially oxygen, in the planets' atmospheres (e.g., using James Webb Space Telescope (JWST)). Already there are more such planets than can be observed by JWST, and missions like the Transiting Exoplanet Survey Satellite and others will find more. A better understanding of the geochemical cycles relevant to biosignature gases is needed, to prioritize targets for costly follow-up observations and to help design future missions. We define a Detectability Index to quantify the likelihood that a biosignature gas could be assigned a biological versus nonbiological origin. We apply this index to the case of oxygen gas, O2, on earthlike planets with varying water contents. We demonstrate that on earthlike exoplanets with 0.2 weight percent (wt%) water (i.e., no exposed continents) a reduced flux of bioessential phosphorus limits the export of photosynthetically produced atmospheric O2 to levels indistinguishable from geophysical production by photolysis of water plus hydrogen escape. Higher water contents >1 wt% that lead to high-pressure ice mantles further slow phosphorus cycling. Paradoxically, the maximum water content allowing use of O2 as a biosignature, 0.2 wt%, is consistent with no water based on mass and radius. Thus, the utility of an O2 biosignature likely requires the direct detection of both water and land on a planet.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab822d</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4579-3628</orcidid><orcidid>https://orcid.org/0000-0002-1571-0836</orcidid><orcidid>https://orcid.org/0000-0002-1180-996X</orcidid><orcidid>https://orcid.org/0000-0002-1150-4605</orcidid><orcidid>https://orcid.org/0000-0002-7084-0529</orcidid><orcidid>https://orcid.org/0000-0002-9548-1526</orcidid><orcidid>https://orcid.org/0000-0001-8991-3110</orcidid><orcidid>https://orcid.org/0000-0003-0736-7844</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-04, Vol.893 (2), p.163 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2395329465 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Astrobiology Astrophysics Biomarkers Biosignatures Circumstellar habitable zone Earth mantle Exoplanets Extrasolar planets Gases Geochemical cycles Habitable planets Hydrogen James Webb Space Telescope Missions Moisture content Ocean planets Oxygen Phosphorus Photolysis Planet detection Planetary atmospheres Planetary mantles Planets Polls & surveys Pressure ice Satellites Space telescopes Spectroscopy Terrestrial planets Transit Water content |
title | Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detectability%20of%20Life%20Using%20Oxygen%20on%20Pelagic%20Planets%20and%20Water%20Worlds&rft.jtitle=The%20Astrophysical%20journal&rft.au=Glaser,%20Donald%20M&rft.date=2020-04-01&rft.volume=893&rft.issue=2&rft.spage=163&rft.pages=163-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab822d&rft_dat=%3Cproquest_iop_j%3E2395329465%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395329465&rft_id=info:pmid/&rfr_iscdi=true |