Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs
Acid fracturing is a key measure to increase production of fracture-cavity reservoirs. Affected by the fracture-cavity system, hydraulic fractures will not propagate in a plane, and the mechanism of hydraulic fracture propagation is complicated. Therefore, considering the characteristics of hydrauli...
Gespeichert in:
Veröffentlicht in: | Chemistry and technology of fuels and oils 2020, Vol.55 (6), p.814-827 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 827 |
---|---|
container_issue | 6 |
container_start_page | 814 |
container_title | Chemistry and technology of fuels and oils |
container_volume | 55 |
creator | Zhao, Haiyang Xie, Yaozeng Zhao, Liqiang Liu, Zhiyuan Li, Yongshou Li, Nan |
description | Acid fracturing is a key measure to increase production of fracture-cavity reservoirs. Affected by the fracture-cavity system, hydraulic fractures will not propagate in a plane, and the mechanism of hydraulic fracture propagation is complicated. Therefore, considering the characteristics of hydraulic fracture propagation in fracture-cavity reservoirs, we established an extended finite element (XTEM) model for hydraulic fractures in fracture-cavity reservoirs. The simulation discussed hydraulic fracture extension in cases of a single cave and a single natural fracture and revealed the mechanism of dynamic propagation and extension of hydraulic fractures. The results indicated severe stress concentrations near caves, resulting in deflections of the fracture propagation direction. In the case of a single cave, upon shifts of shafts from the central line of the cave, the conditions of penetration of the cave by hydraulic fractures were investigated. It was shown that in the case of small approaching angles, the hydraulic fractures tend to deflect and join natural fractures; also, the hydraulic fractures can deflect and join natural fractures with large approaching angles and weak cementation. Generally small approaching angles and long natural fractures tend to induce hydraulic fractures and assist propagation towards the caves, thus increasing the probability of cave penetration. |
doi_str_mv | 10.1007/s10553-020-01096-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2395311480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622187746</galeid><sourcerecordid>A622187746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-fd32aa0d01fcd8d62dade504d573e45845a90cdd544832af69d7fd737394aba13</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKt_wKcFn1Mnl73ksRRrhYriBR9D3CQ1pbupyW6h_97UFX2TeRhmON_M4SB0SWBCAMrrSCDPGQYKGAiIAosjNCJ5yXDFCByjEQAIzEDQU3QW4_owlpSN0Nuza_qN6pxvM2-ze1N_qNbF5jAs9jqofuPqbB5U3fXBZI_Bb9VqkLv2d49naue6ffZkogk770I8RydWbaK5-Olj9Dq_eZkt8PLh9m42XeKaibzDVjOqFGggttaVLqhW2uTAdbJueF7xXAmotc45r5LSFkKXVpesZIKrd0XYGF0Nd7fBf_YmdnLt-9Cml5KmD4wQXkFSTQbVSm2MdK31XXKeSpvG1b411qX9tKCUVGXJiwTQAaiDjzEYK7fBNSrsJQF5SFwOicuUuPxOXIoEsQGKSdyuTPjz8g_1BcuyhAs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395311480</pqid></control><display><type>article</type><title>Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs</title><source>Springer Online Journals</source><creator>Zhao, Haiyang ; Xie, Yaozeng ; Zhao, Liqiang ; Liu, Zhiyuan ; Li, Yongshou ; Li, Nan</creator><creatorcontrib>Zhao, Haiyang ; Xie, Yaozeng ; Zhao, Liqiang ; Liu, Zhiyuan ; Li, Yongshou ; Li, Nan</creatorcontrib><description>Acid fracturing is a key measure to increase production of fracture-cavity reservoirs. Affected by the fracture-cavity system, hydraulic fractures will not propagate in a plane, and the mechanism of hydraulic fracture propagation is complicated. Therefore, considering the characteristics of hydraulic fracture propagation in fracture-cavity reservoirs, we established an extended finite element (XTEM) model for hydraulic fractures in fracture-cavity reservoirs. The simulation discussed hydraulic fracture extension in cases of a single cave and a single natural fracture and revealed the mechanism of dynamic propagation and extension of hydraulic fractures. The results indicated severe stress concentrations near caves, resulting in deflections of the fracture propagation direction. In the case of a single cave, upon shifts of shafts from the central line of the cave, the conditions of penetration of the cave by hydraulic fractures were investigated. It was shown that in the case of small approaching angles, the hydraulic fractures tend to deflect and join natural fractures; also, the hydraulic fractures can deflect and join natural fractures with large approaching angles and weak cementation. Generally small approaching angles and long natural fractures tend to induce hydraulic fractures and assist propagation towards the caves, thus increasing the probability of cave penetration.</description><identifier>ISSN: 0009-3092</identifier><identifier>EISSN: 1573-8310</identifier><identifier>DOI: 10.1007/s10553-020-01096-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Caves ; Cementation ; Chemistry ; Chemistry and Materials Science ; Computer simulation ; Crack propagation ; Finite element method ; Fracture mechanics ; Geotechnical Engineering & Applied Earth Sciences ; Hydraulic fracturing ; Hydraulics ; Industrial Chemistry/Chemical Engineering ; Mineral Resources ; Penetration ; Propagation ; Reservoirs ; Stress propagation</subject><ispartof>Chemistry and technology of fuels and oils, 2020, Vol.55 (6), p.814-827</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-fd32aa0d01fcd8d62dade504d573e45845a90cdd544832af69d7fd737394aba13</citedby><cites>FETCH-LOGICAL-c395t-fd32aa0d01fcd8d62dade504d573e45845a90cdd544832af69d7fd737394aba13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10553-020-01096-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10553-020-01096-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zhao, Haiyang</creatorcontrib><creatorcontrib>Xie, Yaozeng</creatorcontrib><creatorcontrib>Zhao, Liqiang</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Li, Yongshou</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><title>Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs</title><title>Chemistry and technology of fuels and oils</title><addtitle>Chem Technol Fuels Oils</addtitle><description>Acid fracturing is a key measure to increase production of fracture-cavity reservoirs. Affected by the fracture-cavity system, hydraulic fractures will not propagate in a plane, and the mechanism of hydraulic fracture propagation is complicated. Therefore, considering the characteristics of hydraulic fracture propagation in fracture-cavity reservoirs, we established an extended finite element (XTEM) model for hydraulic fractures in fracture-cavity reservoirs. The simulation discussed hydraulic fracture extension in cases of a single cave and a single natural fracture and revealed the mechanism of dynamic propagation and extension of hydraulic fractures. The results indicated severe stress concentrations near caves, resulting in deflections of the fracture propagation direction. In the case of a single cave, upon shifts of shafts from the central line of the cave, the conditions of penetration of the cave by hydraulic fractures were investigated. It was shown that in the case of small approaching angles, the hydraulic fractures tend to deflect and join natural fractures; also, the hydraulic fractures can deflect and join natural fractures with large approaching angles and weak cementation. Generally small approaching angles and long natural fractures tend to induce hydraulic fractures and assist propagation towards the caves, thus increasing the probability of cave penetration.</description><subject>Caves</subject><subject>Cementation</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydraulic fracturing</subject><subject>Hydraulics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mineral Resources</subject><subject>Penetration</subject><subject>Propagation</subject><subject>Reservoirs</subject><subject>Stress propagation</subject><issn>0009-3092</issn><issn>1573-8310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWKt_wKcFn1Mnl73ksRRrhYriBR9D3CQ1pbupyW6h_97UFX2TeRhmON_M4SB0SWBCAMrrSCDPGQYKGAiIAosjNCJ5yXDFCByjEQAIzEDQU3QW4_owlpSN0Nuza_qN6pxvM2-ze1N_qNbF5jAs9jqofuPqbB5U3fXBZI_Bb9VqkLv2d49naue6ffZkogk770I8RydWbaK5-Olj9Dq_eZkt8PLh9m42XeKaibzDVjOqFGggttaVLqhW2uTAdbJueF7xXAmotc45r5LSFkKXVpesZIKrd0XYGF0Nd7fBf_YmdnLt-9Cml5KmD4wQXkFSTQbVSm2MdK31XXKeSpvG1b411qX9tKCUVGXJiwTQAaiDjzEYK7fBNSrsJQF5SFwOicuUuPxOXIoEsQGKSdyuTPjz8g_1BcuyhAs</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhao, Haiyang</creator><creator>Xie, Yaozeng</creator><creator>Zhao, Liqiang</creator><creator>Liu, Zhiyuan</creator><creator>Li, Yongshou</creator><creator>Li, Nan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2020</creationdate><title>Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs</title><author>Zhao, Haiyang ; Xie, Yaozeng ; Zhao, Liqiang ; Liu, Zhiyuan ; Li, Yongshou ; Li, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-fd32aa0d01fcd8d62dade504d573e45845a90cdd544832af69d7fd737394aba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Caves</topic><topic>Cementation</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydraulic fracturing</topic><topic>Hydraulics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mineral Resources</topic><topic>Penetration</topic><topic>Propagation</topic><topic>Reservoirs</topic><topic>Stress propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Haiyang</creatorcontrib><creatorcontrib>Xie, Yaozeng</creatorcontrib><creatorcontrib>Zhao, Liqiang</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Li, Yongshou</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry and technology of fuels and oils</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Haiyang</au><au>Xie, Yaozeng</au><au>Zhao, Liqiang</au><au>Liu, Zhiyuan</au><au>Li, Yongshou</au><au>Li, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs</atitle><jtitle>Chemistry and technology of fuels and oils</jtitle><stitle>Chem Technol Fuels Oils</stitle><date>2020</date><risdate>2020</risdate><volume>55</volume><issue>6</issue><spage>814</spage><epage>827</epage><pages>814-827</pages><issn>0009-3092</issn><eissn>1573-8310</eissn><abstract>Acid fracturing is a key measure to increase production of fracture-cavity reservoirs. Affected by the fracture-cavity system, hydraulic fractures will not propagate in a plane, and the mechanism of hydraulic fracture propagation is complicated. Therefore, considering the characteristics of hydraulic fracture propagation in fracture-cavity reservoirs, we established an extended finite element (XTEM) model for hydraulic fractures in fracture-cavity reservoirs. The simulation discussed hydraulic fracture extension in cases of a single cave and a single natural fracture and revealed the mechanism of dynamic propagation and extension of hydraulic fractures. The results indicated severe stress concentrations near caves, resulting in deflections of the fracture propagation direction. In the case of a single cave, upon shifts of shafts from the central line of the cave, the conditions of penetration of the cave by hydraulic fractures were investigated. It was shown that in the case of small approaching angles, the hydraulic fractures tend to deflect and join natural fractures; also, the hydraulic fractures can deflect and join natural fractures with large approaching angles and weak cementation. Generally small approaching angles and long natural fractures tend to induce hydraulic fractures and assist propagation towards the caves, thus increasing the probability of cave penetration.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10553-020-01096-9</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-3092 |
ispartof | Chemistry and technology of fuels and oils, 2020, Vol.55 (6), p.814-827 |
issn | 0009-3092 1573-8310 |
language | eng |
recordid | cdi_proquest_journals_2395311480 |
source | Springer Online Journals |
subjects | Caves Cementation Chemistry Chemistry and Materials Science Computer simulation Crack propagation Finite element method Fracture mechanics Geotechnical Engineering & Applied Earth Sciences Hydraulic fracturing Hydraulics Industrial Chemistry/Chemical Engineering Mineral Resources Penetration Propagation Reservoirs Stress propagation |
title | Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Mechanism%20of%20Hydraulic%20Fracture%20Propagation%20in%20Fracture-Cavity%20Reservoirs&rft.jtitle=Chemistry%20and%20technology%20of%20fuels%20and%20oils&rft.au=Zhao,%20Haiyang&rft.date=2020&rft.volume=55&rft.issue=6&rft.spage=814&rft.epage=827&rft.pages=814-827&rft.issn=0009-3092&rft.eissn=1573-8310&rft_id=info:doi/10.1007/s10553-020-01096-9&rft_dat=%3Cgale_proqu%3EA622187746%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395311480&rft_id=info:pmid/&rft_galeid=A622187746&rfr_iscdi=true |