Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs

Acid fracturing is a key measure to increase production of fracture-cavity reservoirs. Affected by the fracture-cavity system, hydraulic fractures will not propagate in a plane, and the mechanism of hydraulic fracture propagation is complicated. Therefore, considering the characteristics of hydrauli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry and technology of fuels and oils 2020, Vol.55 (6), p.814-827
Hauptverfasser: Zhao, Haiyang, Xie, Yaozeng, Zhao, Liqiang, Liu, Zhiyuan, Li, Yongshou, Li, Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 827
container_issue 6
container_start_page 814
container_title Chemistry and technology of fuels and oils
container_volume 55
creator Zhao, Haiyang
Xie, Yaozeng
Zhao, Liqiang
Liu, Zhiyuan
Li, Yongshou
Li, Nan
description Acid fracturing is a key measure to increase production of fracture-cavity reservoirs. Affected by the fracture-cavity system, hydraulic fractures will not propagate in a plane, and the mechanism of hydraulic fracture propagation is complicated. Therefore, considering the characteristics of hydraulic fracture propagation in fracture-cavity reservoirs, we established an extended finite element (XTEM) model for hydraulic fractures in fracture-cavity reservoirs. The simulation discussed hydraulic fracture extension in cases of a single cave and a single natural fracture and revealed the mechanism of dynamic propagation and extension of hydraulic fractures. The results indicated severe stress concentrations near caves, resulting in deflections of the fracture propagation direction. In the case of a single cave, upon shifts of shafts from the central line of the cave, the conditions of penetration of the cave by hydraulic fractures were investigated. It was shown that in the case of small approaching angles, the hydraulic fractures tend to deflect and join natural fractures; also, the hydraulic fractures can deflect and join natural fractures with large approaching angles and weak cementation. Generally small approaching angles and long natural fractures tend to induce hydraulic fractures and assist propagation towards the caves, thus increasing the probability of cave penetration.
doi_str_mv 10.1007/s10553-020-01096-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2395311480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622187746</galeid><sourcerecordid>A622187746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-fd32aa0d01fcd8d62dade504d573e45845a90cdd544832af69d7fd737394aba13</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKt_wKcFn1Mnl73ksRRrhYriBR9D3CQ1pbupyW6h_97UFX2TeRhmON_M4SB0SWBCAMrrSCDPGQYKGAiIAosjNCJ5yXDFCByjEQAIzEDQU3QW4_owlpSN0Nuza_qN6pxvM2-ze1N_qNbF5jAs9jqofuPqbB5U3fXBZI_Bb9VqkLv2d49naue6ffZkogk770I8RydWbaK5-Olj9Dq_eZkt8PLh9m42XeKaibzDVjOqFGggttaVLqhW2uTAdbJueF7xXAmotc45r5LSFkKXVpesZIKrd0XYGF0Nd7fBf_YmdnLt-9Cml5KmD4wQXkFSTQbVSm2MdK31XXKeSpvG1b411qX9tKCUVGXJiwTQAaiDjzEYK7fBNSrsJQF5SFwOicuUuPxOXIoEsQGKSdyuTPjz8g_1BcuyhAs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395311480</pqid></control><display><type>article</type><title>Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs</title><source>Springer Online Journals</source><creator>Zhao, Haiyang ; Xie, Yaozeng ; Zhao, Liqiang ; Liu, Zhiyuan ; Li, Yongshou ; Li, Nan</creator><creatorcontrib>Zhao, Haiyang ; Xie, Yaozeng ; Zhao, Liqiang ; Liu, Zhiyuan ; Li, Yongshou ; Li, Nan</creatorcontrib><description>Acid fracturing is a key measure to increase production of fracture-cavity reservoirs. Affected by the fracture-cavity system, hydraulic fractures will not propagate in a plane, and the mechanism of hydraulic fracture propagation is complicated. Therefore, considering the characteristics of hydraulic fracture propagation in fracture-cavity reservoirs, we established an extended finite element (XTEM) model for hydraulic fractures in fracture-cavity reservoirs. The simulation discussed hydraulic fracture extension in cases of a single cave and a single natural fracture and revealed the mechanism of dynamic propagation and extension of hydraulic fractures. The results indicated severe stress concentrations near caves, resulting in deflections of the fracture propagation direction. In the case of a single cave, upon shifts of shafts from the central line of the cave, the conditions of penetration of the cave by hydraulic fractures were investigated. It was shown that in the case of small approaching angles, the hydraulic fractures tend to deflect and join natural fractures; also, the hydraulic fractures can deflect and join natural fractures with large approaching angles and weak cementation. Generally small approaching angles and long natural fractures tend to induce hydraulic fractures and assist propagation towards the caves, thus increasing the probability of cave penetration.</description><identifier>ISSN: 0009-3092</identifier><identifier>EISSN: 1573-8310</identifier><identifier>DOI: 10.1007/s10553-020-01096-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Caves ; Cementation ; Chemistry ; Chemistry and Materials Science ; Computer simulation ; Crack propagation ; Finite element method ; Fracture mechanics ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydraulic fracturing ; Hydraulics ; Industrial Chemistry/Chemical Engineering ; Mineral Resources ; Penetration ; Propagation ; Reservoirs ; Stress propagation</subject><ispartof>Chemistry and technology of fuels and oils, 2020, Vol.55 (6), p.814-827</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-fd32aa0d01fcd8d62dade504d573e45845a90cdd544832af69d7fd737394aba13</citedby><cites>FETCH-LOGICAL-c395t-fd32aa0d01fcd8d62dade504d573e45845a90cdd544832af69d7fd737394aba13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10553-020-01096-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10553-020-01096-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zhao, Haiyang</creatorcontrib><creatorcontrib>Xie, Yaozeng</creatorcontrib><creatorcontrib>Zhao, Liqiang</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Li, Yongshou</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><title>Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs</title><title>Chemistry and technology of fuels and oils</title><addtitle>Chem Technol Fuels Oils</addtitle><description>Acid fracturing is a key measure to increase production of fracture-cavity reservoirs. Affected by the fracture-cavity system, hydraulic fractures will not propagate in a plane, and the mechanism of hydraulic fracture propagation is complicated. Therefore, considering the characteristics of hydraulic fracture propagation in fracture-cavity reservoirs, we established an extended finite element (XTEM) model for hydraulic fractures in fracture-cavity reservoirs. The simulation discussed hydraulic fracture extension in cases of a single cave and a single natural fracture and revealed the mechanism of dynamic propagation and extension of hydraulic fractures. The results indicated severe stress concentrations near caves, resulting in deflections of the fracture propagation direction. In the case of a single cave, upon shifts of shafts from the central line of the cave, the conditions of penetration of the cave by hydraulic fractures were investigated. It was shown that in the case of small approaching angles, the hydraulic fractures tend to deflect and join natural fractures; also, the hydraulic fractures can deflect and join natural fractures with large approaching angles and weak cementation. Generally small approaching angles and long natural fractures tend to induce hydraulic fractures and assist propagation towards the caves, thus increasing the probability of cave penetration.</description><subject>Caves</subject><subject>Cementation</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydraulic fracturing</subject><subject>Hydraulics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mineral Resources</subject><subject>Penetration</subject><subject>Propagation</subject><subject>Reservoirs</subject><subject>Stress propagation</subject><issn>0009-3092</issn><issn>1573-8310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWKt_wKcFn1Mnl73ksRRrhYriBR9D3CQ1pbupyW6h_97UFX2TeRhmON_M4SB0SWBCAMrrSCDPGQYKGAiIAosjNCJ5yXDFCByjEQAIzEDQU3QW4_owlpSN0Nuza_qN6pxvM2-ze1N_qNbF5jAs9jqofuPqbB5U3fXBZI_Bb9VqkLv2d49naue6ffZkogk770I8RydWbaK5-Olj9Dq_eZkt8PLh9m42XeKaibzDVjOqFGggttaVLqhW2uTAdbJueF7xXAmotc45r5LSFkKXVpesZIKrd0XYGF0Nd7fBf_YmdnLt-9Cml5KmD4wQXkFSTQbVSm2MdK31XXKeSpvG1b411qX9tKCUVGXJiwTQAaiDjzEYK7fBNSrsJQF5SFwOicuUuPxOXIoEsQGKSdyuTPjz8g_1BcuyhAs</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhao, Haiyang</creator><creator>Xie, Yaozeng</creator><creator>Zhao, Liqiang</creator><creator>Liu, Zhiyuan</creator><creator>Li, Yongshou</creator><creator>Li, Nan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2020</creationdate><title>Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs</title><author>Zhao, Haiyang ; Xie, Yaozeng ; Zhao, Liqiang ; Liu, Zhiyuan ; Li, Yongshou ; Li, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-fd32aa0d01fcd8d62dade504d573e45845a90cdd544832af69d7fd737394aba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Caves</topic><topic>Cementation</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydraulic fracturing</topic><topic>Hydraulics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mineral Resources</topic><topic>Penetration</topic><topic>Propagation</topic><topic>Reservoirs</topic><topic>Stress propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Haiyang</creatorcontrib><creatorcontrib>Xie, Yaozeng</creatorcontrib><creatorcontrib>Zhao, Liqiang</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Li, Yongshou</creatorcontrib><creatorcontrib>Li, Nan</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry and technology of fuels and oils</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Haiyang</au><au>Xie, Yaozeng</au><au>Zhao, Liqiang</au><au>Liu, Zhiyuan</au><au>Li, Yongshou</au><au>Li, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs</atitle><jtitle>Chemistry and technology of fuels and oils</jtitle><stitle>Chem Technol Fuels Oils</stitle><date>2020</date><risdate>2020</risdate><volume>55</volume><issue>6</issue><spage>814</spage><epage>827</epage><pages>814-827</pages><issn>0009-3092</issn><eissn>1573-8310</eissn><abstract>Acid fracturing is a key measure to increase production of fracture-cavity reservoirs. Affected by the fracture-cavity system, hydraulic fractures will not propagate in a plane, and the mechanism of hydraulic fracture propagation is complicated. Therefore, considering the characteristics of hydraulic fracture propagation in fracture-cavity reservoirs, we established an extended finite element (XTEM) model for hydraulic fractures in fracture-cavity reservoirs. The simulation discussed hydraulic fracture extension in cases of a single cave and a single natural fracture and revealed the mechanism of dynamic propagation and extension of hydraulic fractures. The results indicated severe stress concentrations near caves, resulting in deflections of the fracture propagation direction. In the case of a single cave, upon shifts of shafts from the central line of the cave, the conditions of penetration of the cave by hydraulic fractures were investigated. It was shown that in the case of small approaching angles, the hydraulic fractures tend to deflect and join natural fractures; also, the hydraulic fractures can deflect and join natural fractures with large approaching angles and weak cementation. Generally small approaching angles and long natural fractures tend to induce hydraulic fractures and assist propagation towards the caves, thus increasing the probability of cave penetration.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10553-020-01096-9</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-3092
ispartof Chemistry and technology of fuels and oils, 2020, Vol.55 (6), p.814-827
issn 0009-3092
1573-8310
language eng
recordid cdi_proquest_journals_2395311480
source Springer Online Journals
subjects Caves
Cementation
Chemistry
Chemistry and Materials Science
Computer simulation
Crack propagation
Finite element method
Fracture mechanics
Geotechnical Engineering & Applied Earth Sciences
Hydraulic fracturing
Hydraulics
Industrial Chemistry/Chemical Engineering
Mineral Resources
Penetration
Propagation
Reservoirs
Stress propagation
title Simulation of Mechanism of Hydraulic Fracture Propagation in Fracture-Cavity Reservoirs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Mechanism%20of%20Hydraulic%20Fracture%20Propagation%20in%20Fracture-Cavity%20Reservoirs&rft.jtitle=Chemistry%20and%20technology%20of%20fuels%20and%20oils&rft.au=Zhao,%20Haiyang&rft.date=2020&rft.volume=55&rft.issue=6&rft.spage=814&rft.epage=827&rft.pages=814-827&rft.issn=0009-3092&rft.eissn=1573-8310&rft_id=info:doi/10.1007/s10553-020-01096-9&rft_dat=%3Cgale_proqu%3EA622187746%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395311480&rft_id=info:pmid/&rft_galeid=A622187746&rfr_iscdi=true