Enhanced photochemical CO2 reduction in the gas phase by graphdiyne

Photocatalytic CO2 reduction is promising for reducing the greenhouse effect and producing renewable energy, but still shows low activity and selectivity due to the ineffective utilization of photogenerated charge carriers and insufficient active sites for CO2 adsorption and activation. Taking CdS n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-04, Vol.8 (16), p.7671-7676
Hauptverfasser: Cao, Shaowen, Wang, Yajie, Zhu, Bicheng, Xie, Guancai, Yu, Jiaguo, Gong, Jian Ru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7676
container_issue 16
container_start_page 7671
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Cao, Shaowen
Wang, Yajie
Zhu, Bicheng
Xie, Guancai
Yu, Jiaguo
Gong, Jian Ru
description Photocatalytic CO2 reduction is promising for reducing the greenhouse effect and producing renewable energy, but still shows low activity and selectivity due to the ineffective utilization of photogenerated charge carriers and insufficient active sites for CO2 adsorption and activation. Taking CdS nanocrystals as a model semiconductor, we demonstrate that graphdiyne, a new type of two-dimensional carbon allotrope uniquely formed from sp- and sp2-hybridized carbon, enhances CO2 photoreduction over CdS with higher activity, selectivity, and stability in the gas phase without any sacrificial agent compared to graphene. Both experimental and theoretical results prove that the chemical bonding between graphdiyne and CdS and sufficient CO2 adsorption sites due to the strong interfacial interaction-induced sulfur vacancies in CdS and more electron-deficient acetylenic linkages in graphdiyne lead to more efficient electron transfer and storage for the subsequent CO2 reduction reaction. The excellent properties of graphdiyne make it promising for applications in solar energy conversion.
doi_str_mv 10.1039/d0ta02256j
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2395289251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395289251</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-2ddabaab29783130fd884e71c5429fbd340810f42e5c9437bcddc3256388390c3</originalsourceid><addsrcrecordid>eNo9j01LxDAYhIMouKx78RcEPFffvEna5Chl_YCFveh5yVe_WNPapIf99xYU5zJzeJhhCLln8MiA6ycP2QCiLIcrskGQUFRCl9f_WalbsktpgFUKoNR6Q-p97Ex0wdOpG_PouvDVO3Om9RHpHPzicj9G2keau0Bbk1bMpEDthbazmTrfX2K4IzeNOaew-_Mt-XzZf9RvxeH4-l4_H4oWEXKB3htrjEVdKc44NF4pESrmpEDdWM8FKAaNwCCdFryyznvH1ztcKa7B8S15-O2d5vF7CSmfhnGZ4zp5Qq4lKo2S8R-fTkuV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395289251</pqid></control><display><type>article</type><title>Enhanced photochemical CO2 reduction in the gas phase by graphdiyne</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Cao, Shaowen ; Wang, Yajie ; Zhu, Bicheng ; Xie, Guancai ; Yu, Jiaguo ; Gong, Jian Ru</creator><creatorcontrib>Cao, Shaowen ; Wang, Yajie ; Zhu, Bicheng ; Xie, Guancai ; Yu, Jiaguo ; Gong, Jian Ru</creatorcontrib><description>Photocatalytic CO2 reduction is promising for reducing the greenhouse effect and producing renewable energy, but still shows low activity and selectivity due to the ineffective utilization of photogenerated charge carriers and insufficient active sites for CO2 adsorption and activation. Taking CdS nanocrystals as a model semiconductor, we demonstrate that graphdiyne, a new type of two-dimensional carbon allotrope uniquely formed from sp- and sp2-hybridized carbon, enhances CO2 photoreduction over CdS with higher activity, selectivity, and stability in the gas phase without any sacrificial agent compared to graphene. Both experimental and theoretical results prove that the chemical bonding between graphdiyne and CdS and sufficient CO2 adsorption sites due to the strong interfacial interaction-induced sulfur vacancies in CdS and more electron-deficient acetylenic linkages in graphdiyne lead to more efficient electron transfer and storage for the subsequent CO2 reduction reaction. The excellent properties of graphdiyne make it promising for applications in solar energy conversion.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta02256j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Allotropy ; Alternative energy sources ; Carbon dioxide ; Chemical bonds ; Chemical reduction ; Current carriers ; Electron transfer ; Energy conversion ; Graphene ; Greenhouse effect ; Nanocrystals ; Photochemicals ; Photoreduction ; Renewable energy ; Selectivity ; Solar energy ; Solar energy conversion ; Sulfur ; Two dimensional models ; Vapor phases</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-04, Vol.8 (16), p.7671-7676</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cao, Shaowen</creatorcontrib><creatorcontrib>Wang, Yajie</creatorcontrib><creatorcontrib>Zhu, Bicheng</creatorcontrib><creatorcontrib>Xie, Guancai</creatorcontrib><creatorcontrib>Yu, Jiaguo</creatorcontrib><creatorcontrib>Gong, Jian Ru</creatorcontrib><title>Enhanced photochemical CO2 reduction in the gas phase by graphdiyne</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Photocatalytic CO2 reduction is promising for reducing the greenhouse effect and producing renewable energy, but still shows low activity and selectivity due to the ineffective utilization of photogenerated charge carriers and insufficient active sites for CO2 adsorption and activation. Taking CdS nanocrystals as a model semiconductor, we demonstrate that graphdiyne, a new type of two-dimensional carbon allotrope uniquely formed from sp- and sp2-hybridized carbon, enhances CO2 photoreduction over CdS with higher activity, selectivity, and stability in the gas phase without any sacrificial agent compared to graphene. Both experimental and theoretical results prove that the chemical bonding between graphdiyne and CdS and sufficient CO2 adsorption sites due to the strong interfacial interaction-induced sulfur vacancies in CdS and more electron-deficient acetylenic linkages in graphdiyne lead to more efficient electron transfer and storage for the subsequent CO2 reduction reaction. The excellent properties of graphdiyne make it promising for applications in solar energy conversion.</description><subject>Adsorption</subject><subject>Allotropy</subject><subject>Alternative energy sources</subject><subject>Carbon dioxide</subject><subject>Chemical bonds</subject><subject>Chemical reduction</subject><subject>Current carriers</subject><subject>Electron transfer</subject><subject>Energy conversion</subject><subject>Graphene</subject><subject>Greenhouse effect</subject><subject>Nanocrystals</subject><subject>Photochemicals</subject><subject>Photoreduction</subject><subject>Renewable energy</subject><subject>Selectivity</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Sulfur</subject><subject>Two dimensional models</subject><subject>Vapor phases</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9j01LxDAYhIMouKx78RcEPFffvEna5Chl_YCFveh5yVe_WNPapIf99xYU5zJzeJhhCLln8MiA6ycP2QCiLIcrskGQUFRCl9f_WalbsktpgFUKoNR6Q-p97Ex0wdOpG_PouvDVO3Om9RHpHPzicj9G2keau0Bbk1bMpEDthbazmTrfX2K4IzeNOaew-_Mt-XzZf9RvxeH4-l4_H4oWEXKB3htrjEVdKc44NF4pESrmpEDdWM8FKAaNwCCdFryyznvH1ztcKa7B8S15-O2d5vF7CSmfhnGZ4zp5Qq4lKo2S8R-fTkuV</recordid><startdate>20200428</startdate><enddate>20200428</enddate><creator>Cao, Shaowen</creator><creator>Wang, Yajie</creator><creator>Zhu, Bicheng</creator><creator>Xie, Guancai</creator><creator>Yu, Jiaguo</creator><creator>Gong, Jian Ru</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200428</creationdate><title>Enhanced photochemical CO2 reduction in the gas phase by graphdiyne</title><author>Cao, Shaowen ; Wang, Yajie ; Zhu, Bicheng ; Xie, Guancai ; Yu, Jiaguo ; Gong, Jian Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-2ddabaab29783130fd884e71c5429fbd340810f42e5c9437bcddc3256388390c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Allotropy</topic><topic>Alternative energy sources</topic><topic>Carbon dioxide</topic><topic>Chemical bonds</topic><topic>Chemical reduction</topic><topic>Current carriers</topic><topic>Electron transfer</topic><topic>Energy conversion</topic><topic>Graphene</topic><topic>Greenhouse effect</topic><topic>Nanocrystals</topic><topic>Photochemicals</topic><topic>Photoreduction</topic><topic>Renewable energy</topic><topic>Selectivity</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Sulfur</topic><topic>Two dimensional models</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Shaowen</creatorcontrib><creatorcontrib>Wang, Yajie</creatorcontrib><creatorcontrib>Zhu, Bicheng</creatorcontrib><creatorcontrib>Xie, Guancai</creatorcontrib><creatorcontrib>Yu, Jiaguo</creatorcontrib><creatorcontrib>Gong, Jian Ru</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Shaowen</au><au>Wang, Yajie</au><au>Zhu, Bicheng</au><au>Xie, Guancai</au><au>Yu, Jiaguo</au><au>Gong, Jian Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced photochemical CO2 reduction in the gas phase by graphdiyne</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-04-28</date><risdate>2020</risdate><volume>8</volume><issue>16</issue><spage>7671</spage><epage>7676</epage><pages>7671-7676</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Photocatalytic CO2 reduction is promising for reducing the greenhouse effect and producing renewable energy, but still shows low activity and selectivity due to the ineffective utilization of photogenerated charge carriers and insufficient active sites for CO2 adsorption and activation. Taking CdS nanocrystals as a model semiconductor, we demonstrate that graphdiyne, a new type of two-dimensional carbon allotrope uniquely formed from sp- and sp2-hybridized carbon, enhances CO2 photoreduction over CdS with higher activity, selectivity, and stability in the gas phase without any sacrificial agent compared to graphene. Both experimental and theoretical results prove that the chemical bonding between graphdiyne and CdS and sufficient CO2 adsorption sites due to the strong interfacial interaction-induced sulfur vacancies in CdS and more electron-deficient acetylenic linkages in graphdiyne lead to more efficient electron transfer and storage for the subsequent CO2 reduction reaction. The excellent properties of graphdiyne make it promising for applications in solar energy conversion.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta02256j</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-04, Vol.8 (16), p.7671-7676
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2395289251
source Royal Society Of Chemistry Journals 2008-
subjects Adsorption
Allotropy
Alternative energy sources
Carbon dioxide
Chemical bonds
Chemical reduction
Current carriers
Electron transfer
Energy conversion
Graphene
Greenhouse effect
Nanocrystals
Photochemicals
Photoreduction
Renewable energy
Selectivity
Solar energy
Solar energy conversion
Sulfur
Two dimensional models
Vapor phases
title Enhanced photochemical CO2 reduction in the gas phase by graphdiyne
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20photochemical%20CO2%20reduction%20in%20the%20gas%20phase%20by%20graphdiyne&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Cao,%20Shaowen&rft.date=2020-04-28&rft.volume=8&rft.issue=16&rft.spage=7671&rft.epage=7676&rft.pages=7671-7676&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta02256j&rft_dat=%3Cproquest%3E2395289251%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395289251&rft_id=info:pmid/&rfr_iscdi=true