Molecular Dynamics Simulation on Boundary Lubrication: The Effect of Cycloalkane Carbon Content

Molecular dynamics(MD) simulation is adopt to investigate the boundary lubrication behaviors of cycloalkane lubricants on nanoscale. The effects of lubricant molecular carbon content and loads on boundary lubrication are studied. The boundary lubrication model with single asperity for friction analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ji xie gong cheng xue bao 2020, Vol.56 (1), p.110
Hauptverfasser: Ling, PAN, Shiping, LU, Youhong, CHEN, Hui, YU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 110
container_title Ji xie gong cheng xue bao
container_volume 56
creator Ling, PAN
Shiping, LU
Youhong, CHEN
Hui, YU
description Molecular dynamics(MD) simulation is adopt to investigate the boundary lubrication behaviors of cycloalkane lubricants on nanoscale. The effects of lubricant molecular carbon content and loads on boundary lubrication are studied. The boundary lubrication model with single asperity for friction analysis is set up. The distributions of density are illustrated in the direction of the film thickness when the pressure changes from 25 to 500 MPa. The converse shear velocity is enforced on each wall. The friction, the normal pressure and the stress of the system are calculated. The results show that all the four cycloalkane lubricants are stratified. With the increase of carbon content in lubricant molecule, the trough value in the middle of density distribution curve get higher, the number of the atoms between layers get larger, and the stratification become less obvious. The bearing capacity of the lubricating film increases with the carbon content of the lubricant molecules. The cyclohexane and cyclododecane lubricating films are successively broken at 50 MPa, the cyclotetracosane lubricating film is broken at 100 MPa, while the bearing capacity of the cyclotetradecane exceeds 500 MPa. The friction coefficient of cyclohexane oil film under boundary lubrication is simulated, which is in accordance with the experimental measurement.
doi_str_mv 10.3901/JME.2020.01.110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2395275371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395275371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1550-e0f43666bd10c337338c00d552dc2b6f90b8f5c15514d26ec2ed4314ccf810073</originalsourceid><addsrcrecordid>eNotkL1PwzAQxT2ARCnMrJaYk57t2E7YIJQvtWKgzJbj2CIljYudDP3vcSnSSXd6endP90PohkDOKiCLt_Uyp0AhB5ITAmdoBlzKTIhSXKDLGLcArJKUzJBa-96aqdcBPx4GvetMxB_dLglj5wec6sFPQ6vDAa-mJnTmT7_Dmy-Ll85ZM2LvcH0wvdf9tx4srnVo0lrth9EO4xU6d7qP9vq_z9Hn03JTv2Sr9-fX-n6VGcI5ZBZcwYQQTUvAMCYZKw1AyzltDW2Eq6ApHT96SdFSYQ21bcFIYYwrCYBkc3R7ursP_meycVRbP4UhRSrKKk4lZ5Ik1-LkMsHHGKxT-9Dt0nOKgDqSU4mcOpJTaU7k2C9lFGJV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395275371</pqid></control><display><type>article</type><title>Molecular Dynamics Simulation on Boundary Lubrication: The Effect of Cycloalkane Carbon Content</title><source>Alma/SFX Local Collection</source><creator>Ling, PAN ; Shiping, LU ; Youhong, CHEN ; Hui, YU</creator><creatorcontrib>Ling, PAN ; Shiping, LU ; Youhong, CHEN ; Hui, YU</creatorcontrib><description>Molecular dynamics(MD) simulation is adopt to investigate the boundary lubrication behaviors of cycloalkane lubricants on nanoscale. The effects of lubricant molecular carbon content and loads on boundary lubrication are studied. The boundary lubrication model with single asperity for friction analysis is set up. The distributions of density are illustrated in the direction of the film thickness when the pressure changes from 25 to 500 MPa. The converse shear velocity is enforced on each wall. The friction, the normal pressure and the stress of the system are calculated. The results show that all the four cycloalkane lubricants are stratified. With the increase of carbon content in lubricant molecule, the trough value in the middle of density distribution curve get higher, the number of the atoms between layers get larger, and the stratification become less obvious. The bearing capacity of the lubricating film increases with the carbon content of the lubricant molecules. The cyclohexane and cyclododecane lubricating films are successively broken at 50 MPa, the cyclotetracosane lubricating film is broken at 100 MPa, while the bearing capacity of the cyclotetradecane exceeds 500 MPa. The friction coefficient of cyclohexane oil film under boundary lubrication is simulated, which is in accordance with the experimental measurement.</description><identifier>ISSN: 0577-6686</identifier><identifier>DOI: 10.3901/JME.2020.01.110</identifier><language>eng</language><publisher>Beijing: Chinese Mechanical Engineering Society (CMES)</publisher><subject>Asperity ; Atomic properties ; Bearing capacity ; Boundary lubrication ; Carbon ; Carbon content ; Coefficient of friction ; Computer simulation ; Cycloalkanes ; Cyclohexane ; Density distribution ; Film thickness ; Friction ; Lubricants ; Lubricants &amp; lubrication ; Lubrication ; Molecular dynamics</subject><ispartof>Ji xie gong cheng xue bao, 2020, Vol.56 (1), p.110</ispartof><rights>Copyright Chinese Mechanical Engineering Society (CMES) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1550-e0f43666bd10c337338c00d552dc2b6f90b8f5c15514d26ec2ed4314ccf810073</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ling, PAN</creatorcontrib><creatorcontrib>Shiping, LU</creatorcontrib><creatorcontrib>Youhong, CHEN</creatorcontrib><creatorcontrib>Hui, YU</creatorcontrib><title>Molecular Dynamics Simulation on Boundary Lubrication: The Effect of Cycloalkane Carbon Content</title><title>Ji xie gong cheng xue bao</title><description>Molecular dynamics(MD) simulation is adopt to investigate the boundary lubrication behaviors of cycloalkane lubricants on nanoscale. The effects of lubricant molecular carbon content and loads on boundary lubrication are studied. The boundary lubrication model with single asperity for friction analysis is set up. The distributions of density are illustrated in the direction of the film thickness when the pressure changes from 25 to 500 MPa. The converse shear velocity is enforced on each wall. The friction, the normal pressure and the stress of the system are calculated. The results show that all the four cycloalkane lubricants are stratified. With the increase of carbon content in lubricant molecule, the trough value in the middle of density distribution curve get higher, the number of the atoms between layers get larger, and the stratification become less obvious. The bearing capacity of the lubricating film increases with the carbon content of the lubricant molecules. The cyclohexane and cyclododecane lubricating films are successively broken at 50 MPa, the cyclotetracosane lubricating film is broken at 100 MPa, while the bearing capacity of the cyclotetradecane exceeds 500 MPa. The friction coefficient of cyclohexane oil film under boundary lubrication is simulated, which is in accordance with the experimental measurement.</description><subject>Asperity</subject><subject>Atomic properties</subject><subject>Bearing capacity</subject><subject>Boundary lubrication</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Coefficient of friction</subject><subject>Computer simulation</subject><subject>Cycloalkanes</subject><subject>Cyclohexane</subject><subject>Density distribution</subject><subject>Film thickness</subject><subject>Friction</subject><subject>Lubricants</subject><subject>Lubricants &amp; lubrication</subject><subject>Lubrication</subject><subject>Molecular dynamics</subject><issn>0577-6686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkL1PwzAQxT2ARCnMrJaYk57t2E7YIJQvtWKgzJbj2CIljYudDP3vcSnSSXd6endP90PohkDOKiCLt_Uyp0AhB5ITAmdoBlzKTIhSXKDLGLcArJKUzJBa-96aqdcBPx4GvetMxB_dLglj5wec6sFPQ6vDAa-mJnTmT7_Dmy-Ll85ZM2LvcH0wvdf9tx4srnVo0lrth9EO4xU6d7qP9vq_z9Hn03JTv2Sr9-fX-n6VGcI5ZBZcwYQQTUvAMCYZKw1AyzltDW2Eq6ApHT96SdFSYQ21bcFIYYwrCYBkc3R7ursP_meycVRbP4UhRSrKKk4lZ5Ik1-LkMsHHGKxT-9Dt0nOKgDqSU4mcOpJTaU7k2C9lFGJV</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ling, PAN</creator><creator>Shiping, LU</creator><creator>Youhong, CHEN</creator><creator>Hui, YU</creator><general>Chinese Mechanical Engineering Society (CMES)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2020</creationdate><title>Molecular Dynamics Simulation on Boundary Lubrication: The Effect of Cycloalkane Carbon Content</title><author>Ling, PAN ; Shiping, LU ; Youhong, CHEN ; Hui, YU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1550-e0f43666bd10c337338c00d552dc2b6f90b8f5c15514d26ec2ed4314ccf810073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asperity</topic><topic>Atomic properties</topic><topic>Bearing capacity</topic><topic>Boundary lubrication</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Coefficient of friction</topic><topic>Computer simulation</topic><topic>Cycloalkanes</topic><topic>Cyclohexane</topic><topic>Density distribution</topic><topic>Film thickness</topic><topic>Friction</topic><topic>Lubricants</topic><topic>Lubricants &amp; lubrication</topic><topic>Lubrication</topic><topic>Molecular dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, PAN</creatorcontrib><creatorcontrib>Shiping, LU</creatorcontrib><creatorcontrib>Youhong, CHEN</creatorcontrib><creatorcontrib>Hui, YU</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ji xie gong cheng xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, PAN</au><au>Shiping, LU</au><au>Youhong, CHEN</au><au>Hui, YU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulation on Boundary Lubrication: The Effect of Cycloalkane Carbon Content</atitle><jtitle>Ji xie gong cheng xue bao</jtitle><date>2020</date><risdate>2020</risdate><volume>56</volume><issue>1</issue><spage>110</spage><pages>110-</pages><issn>0577-6686</issn><abstract>Molecular dynamics(MD) simulation is adopt to investigate the boundary lubrication behaviors of cycloalkane lubricants on nanoscale. The effects of lubricant molecular carbon content and loads on boundary lubrication are studied. The boundary lubrication model with single asperity for friction analysis is set up. The distributions of density are illustrated in the direction of the film thickness when the pressure changes from 25 to 500 MPa. The converse shear velocity is enforced on each wall. The friction, the normal pressure and the stress of the system are calculated. The results show that all the four cycloalkane lubricants are stratified. With the increase of carbon content in lubricant molecule, the trough value in the middle of density distribution curve get higher, the number of the atoms between layers get larger, and the stratification become less obvious. The bearing capacity of the lubricating film increases with the carbon content of the lubricant molecules. The cyclohexane and cyclododecane lubricating films are successively broken at 50 MPa, the cyclotetracosane lubricating film is broken at 100 MPa, while the bearing capacity of the cyclotetradecane exceeds 500 MPa. The friction coefficient of cyclohexane oil film under boundary lubrication is simulated, which is in accordance with the experimental measurement.</abstract><cop>Beijing</cop><pub>Chinese Mechanical Engineering Society (CMES)</pub><doi>10.3901/JME.2020.01.110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0577-6686
ispartof Ji xie gong cheng xue bao, 2020, Vol.56 (1), p.110
issn 0577-6686
language eng
recordid cdi_proquest_journals_2395275371
source Alma/SFX Local Collection
subjects Asperity
Atomic properties
Bearing capacity
Boundary lubrication
Carbon
Carbon content
Coefficient of friction
Computer simulation
Cycloalkanes
Cyclohexane
Density distribution
Film thickness
Friction
Lubricants
Lubricants & lubrication
Lubrication
Molecular dynamics
title Molecular Dynamics Simulation on Boundary Lubrication: The Effect of Cycloalkane Carbon Content
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulation%20on%20Boundary%20Lubrication:%20The%20Effect%20of%20Cycloalkane%20Carbon%20Content&rft.jtitle=Ji%20xie%20gong%20cheng%20xue%20bao&rft.au=Ling,%20PAN&rft.date=2020&rft.volume=56&rft.issue=1&rft.spage=110&rft.pages=110-&rft.issn=0577-6686&rft_id=info:doi/10.3901/JME.2020.01.110&rft_dat=%3Cproquest_cross%3E2395275371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395275371&rft_id=info:pmid/&rfr_iscdi=true