Pointwise multiple averages for sublinear functions

For any measure-preserving system $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T_{1},\ldots ,T_{d})$ with no commutativity assumptions on the transformations $T_{i},$$1\leq i\leq d,$ we study the pointwise convergence of multiple ergodic averages with iterates of different growth coming from a large cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2020-06, Vol.40 (6), p.1594-1618
Hauptverfasser: DONOSO, SEBASTIÁN, KOUTSOGIANNIS, ANDREAS, SUN, WENBO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1618
container_issue 6
container_start_page 1594
container_title Ergodic theory and dynamical systems
container_volume 40
creator DONOSO, SEBASTIÁN
KOUTSOGIANNIS, ANDREAS
SUN, WENBO
description For any measure-preserving system $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T_{1},\ldots ,T_{d})$ with no commutativity assumptions on the transformations $T_{i},$$1\leq i\leq d,$ we study the pointwise convergence of multiple ergodic averages with iterates of different growth coming from a large class of sublinear functions. This class properly contains important subclasses of Hardy field functions of order zero and of Fejér functions, i.e., tempered functions of order zero. We show that the convergence of the single average, via an invariant property, implies the convergence of the multiple one. We also provide examples of sublinear functions which are, in general, bad for convergence on arbitrary systems, but good for uniquely ergodic systems. The case where the fastest function is linear is addressed as well, and we provide, in all the cases, an explicit formula of the limit function.
doi_str_mv 10.1017/etds.2018.118
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2395190179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2018_118</cupid><sourcerecordid>2395190179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-76decb15f0a95f6568bccce543d3fdc7ea2fa54bbae935b5d58f5695234417193</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMoWFeP3gueu5tpkrY5yuIXLOhBzyFJJ0uWfpm0iv_ell3w4mkuz7zvzEPILdA1UCg3ONZxnVOo1gDVGUmAFzLjHMpzklDgLGOVKC_JVYwHSimDUiSEvfW-G799xLSdmtEPDab6C4PeY0xdH9I4mcZ3qEPqps6Ovu_iNblwuol4c5or8vH48L59znavTy_b-11mGedjVhY1WgPCUS2FK0RRGWstCs5q5mpbos6dFtwYjZIJI2pROVFIkbPlZpBsRe6OuUPoPyeMozr0U-jmSpUzKUDOTy9UdqRs6GMM6NQQfKvDjwKqFi9q8aIWL2r2MvObE69bE3y9x7_Y_zd-AcNlZjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395190179</pqid></control><display><type>article</type><title>Pointwise multiple averages for sublinear functions</title><source>Cambridge Journals</source><creator>DONOSO, SEBASTIÁN ; KOUTSOGIANNIS, ANDREAS ; SUN, WENBO</creator><creatorcontrib>DONOSO, SEBASTIÁN ; KOUTSOGIANNIS, ANDREAS ; SUN, WENBO</creatorcontrib><description>For any measure-preserving system $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T_{1},\ldots ,T_{d})$ with no commutativity assumptions on the transformations $T_{i},$$1\leq i\leq d,$ we study the pointwise convergence of multiple ergodic averages with iterates of different growth coming from a large class of sublinear functions. This class properly contains important subclasses of Hardy field functions of order zero and of Fejér functions, i.e., tempered functions of order zero. We show that the convergence of the single average, via an invariant property, implies the convergence of the multiple one. We also provide examples of sublinear functions which are, in general, bad for convergence on arbitrary systems, but good for uniquely ergodic systems. The case where the fastest function is linear is addressed as well, and we provide, in all the cases, an explicit formula of the limit function.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2018.118</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Commutativity ; Convergence ; Ergodic processes ; Original Article</subject><ispartof>Ergodic theory and dynamical systems, 2020-06, Vol.40 (6), p.1594-1618</ispartof><rights>Cambridge University Press, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-76decb15f0a95f6568bccce543d3fdc7ea2fa54bbae935b5d58f5695234417193</citedby><cites>FETCH-LOGICAL-c344t-76decb15f0a95f6568bccce543d3fdc7ea2fa54bbae935b5d58f5695234417193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385718001189/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>DONOSO, SEBASTIÁN</creatorcontrib><creatorcontrib>KOUTSOGIANNIS, ANDREAS</creatorcontrib><creatorcontrib>SUN, WENBO</creatorcontrib><title>Pointwise multiple averages for sublinear functions</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>For any measure-preserving system $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T_{1},\ldots ,T_{d})$ with no commutativity assumptions on the transformations $T_{i},$$1\leq i\leq d,$ we study the pointwise convergence of multiple ergodic averages with iterates of different growth coming from a large class of sublinear functions. This class properly contains important subclasses of Hardy field functions of order zero and of Fejér functions, i.e., tempered functions of order zero. We show that the convergence of the single average, via an invariant property, implies the convergence of the multiple one. We also provide examples of sublinear functions which are, in general, bad for convergence on arbitrary systems, but good for uniquely ergodic systems. The case where the fastest function is linear is addressed as well, and we provide, in all the cases, an explicit formula of the limit function.</description><subject>Commutativity</subject><subject>Convergence</subject><subject>Ergodic processes</subject><subject>Original Article</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkE1LxDAQhoMoWFeP3gueu5tpkrY5yuIXLOhBzyFJJ0uWfpm0iv_ell3w4mkuz7zvzEPILdA1UCg3ONZxnVOo1gDVGUmAFzLjHMpzklDgLGOVKC_JVYwHSimDUiSEvfW-G799xLSdmtEPDab6C4PeY0xdH9I4mcZ3qEPqps6Ovu_iNblwuol4c5or8vH48L59znavTy_b-11mGedjVhY1WgPCUS2FK0RRGWstCs5q5mpbos6dFtwYjZIJI2pROVFIkbPlZpBsRe6OuUPoPyeMozr0U-jmSpUzKUDOTy9UdqRs6GMM6NQQfKvDjwKqFi9q8aIWL2r2MvObE69bE3y9x7_Y_zd-AcNlZjU</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>DONOSO, SEBASTIÁN</creator><creator>KOUTSOGIANNIS, ANDREAS</creator><creator>SUN, WENBO</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202006</creationdate><title>Pointwise multiple averages for sublinear functions</title><author>DONOSO, SEBASTIÁN ; KOUTSOGIANNIS, ANDREAS ; SUN, WENBO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-76decb15f0a95f6568bccce543d3fdc7ea2fa54bbae935b5d58f5695234417193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Commutativity</topic><topic>Convergence</topic><topic>Ergodic processes</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DONOSO, SEBASTIÁN</creatorcontrib><creatorcontrib>KOUTSOGIANNIS, ANDREAS</creatorcontrib><creatorcontrib>SUN, WENBO</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DONOSO, SEBASTIÁN</au><au>KOUTSOGIANNIS, ANDREAS</au><au>SUN, WENBO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pointwise multiple averages for sublinear functions</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2020-06</date><risdate>2020</risdate><volume>40</volume><issue>6</issue><spage>1594</spage><epage>1618</epage><pages>1594-1618</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>For any measure-preserving system $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T_{1},\ldots ,T_{d})$ with no commutativity assumptions on the transformations $T_{i},$$1\leq i\leq d,$ we study the pointwise convergence of multiple ergodic averages with iterates of different growth coming from a large class of sublinear functions. This class properly contains important subclasses of Hardy field functions of order zero and of Fejér functions, i.e., tempered functions of order zero. We show that the convergence of the single average, via an invariant property, implies the convergence of the multiple one. We also provide examples of sublinear functions which are, in general, bad for convergence on arbitrary systems, but good for uniquely ergodic systems. The case where the fastest function is linear is addressed as well, and we provide, in all the cases, an explicit formula of the limit function.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2018.118</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2020-06, Vol.40 (6), p.1594-1618
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_2395190179
source Cambridge Journals
subjects Commutativity
Convergence
Ergodic processes
Original Article
title Pointwise multiple averages for sublinear functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pointwise%20multiple%20averages%20for%20sublinear%20functions&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=DONOSO,%20SEBASTI%C3%81N&rft.date=2020-06&rft.volume=40&rft.issue=6&rft.spage=1594&rft.epage=1618&rft.pages=1594-1618&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2018.118&rft_dat=%3Cproquest_cross%3E2395190179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395190179&rft_id=info:pmid/&rft_cupid=10_1017_etds_2018_118&rfr_iscdi=true