Pointwise multiple averages for sublinear functions
For any measure-preserving system $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T_{1},\ldots ,T_{d})$ with no commutativity assumptions on the transformations $T_{i},$$1\leq i\leq d,$ we study the pointwise convergence of multiple ergodic averages with iterates of different growth coming from a large cla...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2020-06, Vol.40 (6), p.1594-1618 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1618 |
---|---|
container_issue | 6 |
container_start_page | 1594 |
container_title | Ergodic theory and dynamical systems |
container_volume | 40 |
creator | DONOSO, SEBASTIÁN KOUTSOGIANNIS, ANDREAS SUN, WENBO |
description | For any measure-preserving system $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T_{1},\ldots ,T_{d})$ with no commutativity assumptions on the transformations $T_{i},$$1\leq i\leq d,$ we study the pointwise convergence of multiple ergodic averages with iterates of different growth coming from a large class of sublinear functions. This class properly contains important subclasses of Hardy field functions of order zero and of Fejér functions, i.e., tempered functions of order zero. We show that the convergence of the single average, via an invariant property, implies the convergence of the multiple one. We also provide examples of sublinear functions which are, in general, bad for convergence on arbitrary systems, but good for uniquely ergodic systems. The case where the fastest function is linear is addressed as well, and we provide, in all the cases, an explicit formula of the limit function. |
doi_str_mv | 10.1017/etds.2018.118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2395190179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2018_118</cupid><sourcerecordid>2395190179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-76decb15f0a95f6568bccce543d3fdc7ea2fa54bbae935b5d58f5695234417193</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMoWFeP3gueu5tpkrY5yuIXLOhBzyFJJ0uWfpm0iv_ell3w4mkuz7zvzEPILdA1UCg3ONZxnVOo1gDVGUmAFzLjHMpzklDgLGOVKC_JVYwHSimDUiSEvfW-G799xLSdmtEPDab6C4PeY0xdH9I4mcZ3qEPqps6Ovu_iNblwuol4c5or8vH48L59znavTy_b-11mGedjVhY1WgPCUS2FK0RRGWstCs5q5mpbos6dFtwYjZIJI2pROVFIkbPlZpBsRe6OuUPoPyeMozr0U-jmSpUzKUDOTy9UdqRs6GMM6NQQfKvDjwKqFi9q8aIWL2r2MvObE69bE3y9x7_Y_zd-AcNlZjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395190179</pqid></control><display><type>article</type><title>Pointwise multiple averages for sublinear functions</title><source>Cambridge Journals</source><creator>DONOSO, SEBASTIÁN ; KOUTSOGIANNIS, ANDREAS ; SUN, WENBO</creator><creatorcontrib>DONOSO, SEBASTIÁN ; KOUTSOGIANNIS, ANDREAS ; SUN, WENBO</creatorcontrib><description>For any measure-preserving system $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T_{1},\ldots ,T_{d})$ with no commutativity assumptions on the transformations $T_{i},$$1\leq i\leq d,$ we study the pointwise convergence of multiple ergodic averages with iterates of different growth coming from a large class of sublinear functions. This class properly contains important subclasses of Hardy field functions of order zero and of Fejér functions, i.e., tempered functions of order zero. We show that the convergence of the single average, via an invariant property, implies the convergence of the multiple one. We also provide examples of sublinear functions which are, in general, bad for convergence on arbitrary systems, but good for uniquely ergodic systems. The case where the fastest function is linear is addressed as well, and we provide, in all the cases, an explicit formula of the limit function.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2018.118</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Commutativity ; Convergence ; Ergodic processes ; Original Article</subject><ispartof>Ergodic theory and dynamical systems, 2020-06, Vol.40 (6), p.1594-1618</ispartof><rights>Cambridge University Press, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-76decb15f0a95f6568bccce543d3fdc7ea2fa54bbae935b5d58f5695234417193</citedby><cites>FETCH-LOGICAL-c344t-76decb15f0a95f6568bccce543d3fdc7ea2fa54bbae935b5d58f5695234417193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385718001189/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>DONOSO, SEBASTIÁN</creatorcontrib><creatorcontrib>KOUTSOGIANNIS, ANDREAS</creatorcontrib><creatorcontrib>SUN, WENBO</creatorcontrib><title>Pointwise multiple averages for sublinear functions</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>For any measure-preserving system $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T_{1},\ldots ,T_{d})$ with no commutativity assumptions on the transformations $T_{i},$$1\leq i\leq d,$ we study the pointwise convergence of multiple ergodic averages with iterates of different growth coming from a large class of sublinear functions. This class properly contains important subclasses of Hardy field functions of order zero and of Fejér functions, i.e., tempered functions of order zero. We show that the convergence of the single average, via an invariant property, implies the convergence of the multiple one. We also provide examples of sublinear functions which are, in general, bad for convergence on arbitrary systems, but good for uniquely ergodic systems. The case where the fastest function is linear is addressed as well, and we provide, in all the cases, an explicit formula of the limit function.</description><subject>Commutativity</subject><subject>Convergence</subject><subject>Ergodic processes</subject><subject>Original Article</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkE1LxDAQhoMoWFeP3gueu5tpkrY5yuIXLOhBzyFJJ0uWfpm0iv_ell3w4mkuz7zvzEPILdA1UCg3ONZxnVOo1gDVGUmAFzLjHMpzklDgLGOVKC_JVYwHSimDUiSEvfW-G799xLSdmtEPDab6C4PeY0xdH9I4mcZ3qEPqps6Ovu_iNblwuol4c5or8vH48L59znavTy_b-11mGedjVhY1WgPCUS2FK0RRGWstCs5q5mpbos6dFtwYjZIJI2pROVFIkbPlZpBsRe6OuUPoPyeMozr0U-jmSpUzKUDOTy9UdqRs6GMM6NQQfKvDjwKqFi9q8aIWL2r2MvObE69bE3y9x7_Y_zd-AcNlZjU</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>DONOSO, SEBASTIÁN</creator><creator>KOUTSOGIANNIS, ANDREAS</creator><creator>SUN, WENBO</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202006</creationdate><title>Pointwise multiple averages for sublinear functions</title><author>DONOSO, SEBASTIÁN ; KOUTSOGIANNIS, ANDREAS ; SUN, WENBO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-76decb15f0a95f6568bccce543d3fdc7ea2fa54bbae935b5d58f5695234417193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Commutativity</topic><topic>Convergence</topic><topic>Ergodic processes</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DONOSO, SEBASTIÁN</creatorcontrib><creatorcontrib>KOUTSOGIANNIS, ANDREAS</creatorcontrib><creatorcontrib>SUN, WENBO</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DONOSO, SEBASTIÁN</au><au>KOUTSOGIANNIS, ANDREAS</au><au>SUN, WENBO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pointwise multiple averages for sublinear functions</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2020-06</date><risdate>2020</risdate><volume>40</volume><issue>6</issue><spage>1594</spage><epage>1618</epage><pages>1594-1618</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>For any measure-preserving system $(X,{\mathcal{B}},\unicode[STIX]{x1D707},T_{1},\ldots ,T_{d})$ with no commutativity assumptions on the transformations $T_{i},$$1\leq i\leq d,$ we study the pointwise convergence of multiple ergodic averages with iterates of different growth coming from a large class of sublinear functions. This class properly contains important subclasses of Hardy field functions of order zero and of Fejér functions, i.e., tempered functions of order zero. We show that the convergence of the single average, via an invariant property, implies the convergence of the multiple one. We also provide examples of sublinear functions which are, in general, bad for convergence on arbitrary systems, but good for uniquely ergodic systems. The case where the fastest function is linear is addressed as well, and we provide, in all the cases, an explicit formula of the limit function.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2018.118</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2020-06, Vol.40 (6), p.1594-1618 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_journals_2395190179 |
source | Cambridge Journals |
subjects | Commutativity Convergence Ergodic processes Original Article |
title | Pointwise multiple averages for sublinear functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pointwise%20multiple%20averages%20for%20sublinear%20functions&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=DONOSO,%20SEBASTI%C3%81N&rft.date=2020-06&rft.volume=40&rft.issue=6&rft.spage=1594&rft.epage=1618&rft.pages=1594-1618&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2018.118&rft_dat=%3Cproquest_cross%3E2395190179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395190179&rft_id=info:pmid/&rft_cupid=10_1017_etds_2018_118&rfr_iscdi=true |