Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis

The hydrogen evolution reaction (HER) is an emerging key technology to provide clean, renewable energy. Current state‐of‐the‐art catalysts still rely on expensive and rare noble metals, however, the relatively cheap and abundant transition metal dichalcogenides (TMDs) have emerged as exceptionally p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2020-04, Vol.10 (16), p.n/a
Hauptverfasser: Lin, Liangxu, Sherrell, Peter, Liu, Yuqing, Lei, Wen, Zhang, Shaowei, Zhang, Haijun, Wallace, Gordon G., Chen, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title Advanced energy materials
container_volume 10
creator Lin, Liangxu
Sherrell, Peter
Liu, Yuqing
Lei, Wen
Zhang, Shaowei
Zhang, Haijun
Wallace, Gordon G.
Chen, Jun
description The hydrogen evolution reaction (HER) is an emerging key technology to provide clean, renewable energy. Current state‐of‐the‐art catalysts still rely on expensive and rare noble metals, however, the relatively cheap and abundant transition metal dichalcogenides (TMDs) have emerged as exceptionally promising alternatives. Early studies in developing TMD‐based catalysts laid the groundwork in understanding the fundamental catalytically active sites of different TMD phases, enabling a toolbox of physical, chemical, and electronic engineering strategies to improve the HER catalytic activity of TMDs. This report focuses on recent progress in improving the catalytic properties of TMDs toward highly efficient production of H2. Combining theoretical and experimental considerations, a summary of the progress to date is provided and a pathway forward for viable hydrogen evolution from TMD driven catalysis is concluded. Building on the fundamental understanding of the catalytic process and advancements in chemical, electronic, and structural tuning of transition metal chalcogenides, the key concepts for the electrochemical hydrogen evolution reaction (HER) are provided and their potential as the next‐generation of HER catalysts is discussed, providing a clear pathway forward for viable hydrogen evolution.
doi_str_mv 10.1002/aenm.201903870
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2395170183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395170183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4600-8aa97d580fc98eed191f49c2cc634a99c543d75a42b33dea057e39a55b4c74893</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEhV0ZY7EnGLHdhKPVRsoUgsSKqzW1bkUV2lS7BaUjYfgCXkSkhaVkVvuH77vTvoJuWJ0wCiNbgCr9SCiTFGeJvSE9FjMRBingp4eM4_OSd_7FW1HKEY57xGbVUtbITrMg2gczB1U3m5tXQUz3EIZjK15hdLUS6xsjv7782sYvFjfAXXRJliUGEya3HVEkL3X5W5vPyGYfRhBe6bx1l-SswJKj_3ffUGeb7P5aBJOH-_uR8NpaERMaZgCqCSXKS2MShFzplghlImMibkApYwUPE8kiGjBeY5AZYJcgZQLYRKRKn5Brg93N65-26Hf6lW9c1X7UkdcSZZQlvKWGhwo42rvHRZ64-waXKMZ1V2jumtUHxttBXUQPmyJzT-0HmYPsz_3B6xse1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395170183</pqid></control><display><type>article</type><title>Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis</title><source>Access via Wiley Online Library</source><creator>Lin, Liangxu ; Sherrell, Peter ; Liu, Yuqing ; Lei, Wen ; Zhang, Shaowei ; Zhang, Haijun ; Wallace, Gordon G. ; Chen, Jun</creator><creatorcontrib>Lin, Liangxu ; Sherrell, Peter ; Liu, Yuqing ; Lei, Wen ; Zhang, Shaowei ; Zhang, Haijun ; Wallace, Gordon G. ; Chen, Jun</creatorcontrib><description>The hydrogen evolution reaction (HER) is an emerging key technology to provide clean, renewable energy. Current state‐of‐the‐art catalysts still rely on expensive and rare noble metals, however, the relatively cheap and abundant transition metal dichalcogenides (TMDs) have emerged as exceptionally promising alternatives. Early studies in developing TMD‐based catalysts laid the groundwork in understanding the fundamental catalytically active sites of different TMD phases, enabling a toolbox of physical, chemical, and electronic engineering strategies to improve the HER catalytic activity of TMDs. This report focuses on recent progress in improving the catalytic properties of TMDs toward highly efficient production of H2. Combining theoretical and experimental considerations, a summary of the progress to date is provided and a pathway forward for viable hydrogen evolution from TMD driven catalysis is concluded. Building on the fundamental understanding of the catalytic process and advancements in chemical, electronic, and structural tuning of transition metal chalcogenides, the key concepts for the electrochemical hydrogen evolution reaction (HER) are provided and their potential as the next‐generation of HER catalysts is discussed, providing a clear pathway forward for viable hydrogen evolution.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201903870</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Catalysis ; Catalysts ; Catalytic activity ; Chalcogenides ; Clean energy ; Electronic engineering ; energy conversion ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Noble metals ; Transition metal compounds ; transition metal dichalcogenides</subject><ispartof>Advanced energy materials, 2020-04, Vol.10 (16), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4600-8aa97d580fc98eed191f49c2cc634a99c543d75a42b33dea057e39a55b4c74893</citedby><cites>FETCH-LOGICAL-c4600-8aa97d580fc98eed191f49c2cc634a99c543d75a42b33dea057e39a55b4c74893</cites><orcidid>0000-0003-2218-7382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201903870$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201903870$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lin, Liangxu</creatorcontrib><creatorcontrib>Sherrell, Peter</creatorcontrib><creatorcontrib>Liu, Yuqing</creatorcontrib><creatorcontrib>Lei, Wen</creatorcontrib><creatorcontrib>Zhang, Shaowei</creatorcontrib><creatorcontrib>Zhang, Haijun</creatorcontrib><creatorcontrib>Wallace, Gordon G.</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><title>Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis</title><title>Advanced energy materials</title><description>The hydrogen evolution reaction (HER) is an emerging key technology to provide clean, renewable energy. Current state‐of‐the‐art catalysts still rely on expensive and rare noble metals, however, the relatively cheap and abundant transition metal dichalcogenides (TMDs) have emerged as exceptionally promising alternatives. Early studies in developing TMD‐based catalysts laid the groundwork in understanding the fundamental catalytically active sites of different TMD phases, enabling a toolbox of physical, chemical, and electronic engineering strategies to improve the HER catalytic activity of TMDs. This report focuses on recent progress in improving the catalytic properties of TMDs toward highly efficient production of H2. Combining theoretical and experimental considerations, a summary of the progress to date is provided and a pathway forward for viable hydrogen evolution from TMD driven catalysis is concluded. Building on the fundamental understanding of the catalytic process and advancements in chemical, electronic, and structural tuning of transition metal chalcogenides, the key concepts for the electrochemical hydrogen evolution reaction (HER) are provided and their potential as the next‐generation of HER catalysts is discussed, providing a clear pathway forward for viable hydrogen evolution.</description><subject>2D materials</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chalcogenides</subject><subject>Clean energy</subject><subject>Electronic engineering</subject><subject>energy conversion</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Noble metals</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenides</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEhV0ZY7EnGLHdhKPVRsoUgsSKqzW1bkUV2lS7BaUjYfgCXkSkhaVkVvuH77vTvoJuWJ0wCiNbgCr9SCiTFGeJvSE9FjMRBingp4eM4_OSd_7FW1HKEY57xGbVUtbITrMg2gczB1U3m5tXQUz3EIZjK15hdLUS6xsjv7782sYvFjfAXXRJliUGEya3HVEkL3X5W5vPyGYfRhBe6bx1l-SswJKj_3ffUGeb7P5aBJOH-_uR8NpaERMaZgCqCSXKS2MShFzplghlImMibkApYwUPE8kiGjBeY5AZYJcgZQLYRKRKn5Brg93N65-26Hf6lW9c1X7UkdcSZZQlvKWGhwo42rvHRZ64-waXKMZ1V2jumtUHxttBXUQPmyJzT-0HmYPsz_3B6xse1U</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Lin, Liangxu</creator><creator>Sherrell, Peter</creator><creator>Liu, Yuqing</creator><creator>Lei, Wen</creator><creator>Zhang, Shaowei</creator><creator>Zhang, Haijun</creator><creator>Wallace, Gordon G.</creator><creator>Chen, Jun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2218-7382</orcidid></search><sort><creationdate>20200401</creationdate><title>Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis</title><author>Lin, Liangxu ; Sherrell, Peter ; Liu, Yuqing ; Lei, Wen ; Zhang, Shaowei ; Zhang, Haijun ; Wallace, Gordon G. ; Chen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4600-8aa97d580fc98eed191f49c2cc634a99c543d75a42b33dea057e39a55b4c74893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2D materials</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chalcogenides</topic><topic>Clean energy</topic><topic>Electronic engineering</topic><topic>energy conversion</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Noble metals</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Liangxu</creatorcontrib><creatorcontrib>Sherrell, Peter</creatorcontrib><creatorcontrib>Liu, Yuqing</creatorcontrib><creatorcontrib>Lei, Wen</creatorcontrib><creatorcontrib>Zhang, Shaowei</creatorcontrib><creatorcontrib>Zhang, Haijun</creatorcontrib><creatorcontrib>Wallace, Gordon G.</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Liangxu</au><au>Sherrell, Peter</au><au>Liu, Yuqing</au><au>Lei, Wen</au><au>Zhang, Shaowei</au><au>Zhang, Haijun</au><au>Wallace, Gordon G.</au><au>Chen, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis</atitle><jtitle>Advanced energy materials</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>10</volume><issue>16</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The hydrogen evolution reaction (HER) is an emerging key technology to provide clean, renewable energy. Current state‐of‐the‐art catalysts still rely on expensive and rare noble metals, however, the relatively cheap and abundant transition metal dichalcogenides (TMDs) have emerged as exceptionally promising alternatives. Early studies in developing TMD‐based catalysts laid the groundwork in understanding the fundamental catalytically active sites of different TMD phases, enabling a toolbox of physical, chemical, and electronic engineering strategies to improve the HER catalytic activity of TMDs. This report focuses on recent progress in improving the catalytic properties of TMDs toward highly efficient production of H2. Combining theoretical and experimental considerations, a summary of the progress to date is provided and a pathway forward for viable hydrogen evolution from TMD driven catalysis is concluded. Building on the fundamental understanding of the catalytic process and advancements in chemical, electronic, and structural tuning of transition metal chalcogenides, the key concepts for the electrochemical hydrogen evolution reaction (HER) are provided and their potential as the next‐generation of HER catalysts is discussed, providing a clear pathway forward for viable hydrogen evolution.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201903870</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-2218-7382</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2020-04, Vol.10 (16), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2395170183
source Access via Wiley Online Library
subjects 2D materials
Catalysis
Catalysts
Catalytic activity
Chalcogenides
Clean energy
Electronic engineering
energy conversion
hydrogen evolution reaction
Hydrogen evolution reactions
Noble metals
Transition metal compounds
transition metal dichalcogenides
title Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%202D%20Transition%20Metal%20Dichalcogenides%E2%80%94A%20Vision%20of%20Viable%20Hydrogen%20Evolution%20Reaction%20Catalysis&rft.jtitle=Advanced%20energy%20materials&rft.au=Lin,%20Liangxu&rft.date=2020-04-01&rft.volume=10&rft.issue=16&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201903870&rft_dat=%3Cproquest_cross%3E2395170183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395170183&rft_id=info:pmid/&rfr_iscdi=true