Resource-efficient fast prediction in healthcare data analytics: A pruned Random Forest regression approach
In predictive healthcare data analytics, high accuracy is both vital and paramount as low accuracy can lead to misdiagnosis, which is known to cause serious health consequences or death. Fast prediction is also considered an important desideratum particularly for machines and mobile devices with lim...
Gespeichert in:
Veröffentlicht in: | Computing 2020-05, Vol.102 (5), p.1187-1198 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1198 |
---|---|
container_issue | 5 |
container_start_page | 1187 |
container_title | Computing |
container_volume | 102 |
creator | Fawagreh, Khaled Gaber, Mohamed Medhat |
description | In predictive healthcare data analytics, high accuracy is both vital and paramount as low accuracy can lead to misdiagnosis, which is known to cause serious health consequences or death. Fast prediction is also considered an important desideratum particularly for machines and mobile devices with limited memory and processing power. For real-time health care analytics applications, particularly the ones that run on mobile devices, such traits (high accuracy and fast prediction) are highly desirable. In this paper, we propose to use an ensemble regression technique based on
CLUB-DRF
, which is a pruned Random Forest that possesses these features. The speed and accuracy of the method have been demonstrated by an experimental study on three medical data sets of three different diseases. |
doi_str_mv | 10.1007/s00607-019-00785-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2395160592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395160592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-93f6ee329ee7840962e5497a3c52765b42dc0f86e435b26322de15e930011b7f3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPAc3SSbLIbb6VYFQShKHgLaXbSbm13a7I99N-buoI3T4-B9828eYRcc7jlAOVdAtBQMuCG5bFSTJ-QES-kZgpUeUpGABxYUamPc3KR0hoAhKzMiHzOMXX76JFhCI1vsO1pcKmnu4h14_uma2nT0hW6Tb_yLiKtXe-oa93m0Dc-3dNJtu5brOnctXW3pbMuYuYjLrOmI-92u9g5v7okZ8FtEl796pi8zx7epk_s5fXxeTp5Yb7gumdGBo0ohUEsqwKMFqgKUzrplSi1WhSi9hAqjYVUC6GlEDVyhUbmH_miDHJMboa9-ezXPoex6_xiTpyskEZxDcqI7BKDy8cupYjB7mKzdfFgOdhjqXYo1eZS7U-pVmdIDlDK5naJ8W_1P9Q3xlR6hQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395160592</pqid></control><display><type>article</type><title>Resource-efficient fast prediction in healthcare data analytics: A pruned Random Forest regression approach</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fawagreh, Khaled ; Gaber, Mohamed Medhat</creator><creatorcontrib>Fawagreh, Khaled ; Gaber, Mohamed Medhat</creatorcontrib><description>In predictive healthcare data analytics, high accuracy is both vital and paramount as low accuracy can lead to misdiagnosis, which is known to cause serious health consequences or death. Fast prediction is also considered an important desideratum particularly for machines and mobile devices with limited memory and processing power. For real-time health care analytics applications, particularly the ones that run on mobile devices, such traits (high accuracy and fast prediction) are highly desirable. In this paper, we propose to use an ensemble regression technique based on
CLUB-DRF
, which is a pruned Random Forest that possesses these features. The speed and accuracy of the method have been demonstrated by an experimental study on three medical data sets of three different diseases.</description><identifier>ISSN: 0010-485X</identifier><identifier>EISSN: 1436-5057</identifier><identifier>DOI: 10.1007/s00607-019-00785-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Accuracy ; Artificial Intelligence ; Computer Appl. in Administrative Data Processing ; Computer Communication Networks ; Computer Science ; Data analysis ; Electronic devices ; Health care ; Information Systems Applications (incl.Internet) ; Mathematical analysis ; Memory devices ; Regression analysis ; Software Engineering</subject><ispartof>Computing, 2020-05, Vol.102 (5), p.1187-1198</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-93f6ee329ee7840962e5497a3c52765b42dc0f86e435b26322de15e930011b7f3</citedby><cites>FETCH-LOGICAL-c416t-93f6ee329ee7840962e5497a3c52765b42dc0f86e435b26322de15e930011b7f3</cites><orcidid>0000-0003-0339-4474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00607-019-00785-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00607-019-00785-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fawagreh, Khaled</creatorcontrib><creatorcontrib>Gaber, Mohamed Medhat</creatorcontrib><title>Resource-efficient fast prediction in healthcare data analytics: A pruned Random Forest regression approach</title><title>Computing</title><addtitle>Computing</addtitle><description>In predictive healthcare data analytics, high accuracy is both vital and paramount as low accuracy can lead to misdiagnosis, which is known to cause serious health consequences or death. Fast prediction is also considered an important desideratum particularly for machines and mobile devices with limited memory and processing power. For real-time health care analytics applications, particularly the ones that run on mobile devices, such traits (high accuracy and fast prediction) are highly desirable. In this paper, we propose to use an ensemble regression technique based on
CLUB-DRF
, which is a pruned Random Forest that possesses these features. The speed and accuracy of the method have been demonstrated by an experimental study on three medical data sets of three different diseases.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Computer Appl. in Administrative Data Processing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Electronic devices</subject><subject>Health care</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Mathematical analysis</subject><subject>Memory devices</subject><subject>Regression analysis</subject><subject>Software Engineering</subject><issn>0010-485X</issn><issn>1436-5057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_wFPAc3SSbLIbb6VYFQShKHgLaXbSbm13a7I99N-buoI3T4-B9828eYRcc7jlAOVdAtBQMuCG5bFSTJ-QES-kZgpUeUpGABxYUamPc3KR0hoAhKzMiHzOMXX76JFhCI1vsO1pcKmnu4h14_uma2nT0hW6Tb_yLiKtXe-oa93m0Dc-3dNJtu5brOnctXW3pbMuYuYjLrOmI-92u9g5v7okZ8FtEl796pi8zx7epk_s5fXxeTp5Yb7gumdGBo0ohUEsqwKMFqgKUzrplSi1WhSi9hAqjYVUC6GlEDVyhUbmH_miDHJMboa9-ezXPoex6_xiTpyskEZxDcqI7BKDy8cupYjB7mKzdfFgOdhjqXYo1eZS7U-pVmdIDlDK5naJ8W_1P9Q3xlR6hQ</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Fawagreh, Khaled</creator><creator>Gaber, Mohamed Medhat</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0339-4474</orcidid></search><sort><creationdate>20200501</creationdate><title>Resource-efficient fast prediction in healthcare data analytics: A pruned Random Forest regression approach</title><author>Fawagreh, Khaled ; Gaber, Mohamed Medhat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-93f6ee329ee7840962e5497a3c52765b42dc0f86e435b26322de15e930011b7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Computer Appl. in Administrative Data Processing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Electronic devices</topic><topic>Health care</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Mathematical analysis</topic><topic>Memory devices</topic><topic>Regression analysis</topic><topic>Software Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fawagreh, Khaled</creatorcontrib><creatorcontrib>Gaber, Mohamed Medhat</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fawagreh, Khaled</au><au>Gaber, Mohamed Medhat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resource-efficient fast prediction in healthcare data analytics: A pruned Random Forest regression approach</atitle><jtitle>Computing</jtitle><stitle>Computing</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>102</volume><issue>5</issue><spage>1187</spage><epage>1198</epage><pages>1187-1198</pages><issn>0010-485X</issn><eissn>1436-5057</eissn><abstract>In predictive healthcare data analytics, high accuracy is both vital and paramount as low accuracy can lead to misdiagnosis, which is known to cause serious health consequences or death. Fast prediction is also considered an important desideratum particularly for machines and mobile devices with limited memory and processing power. For real-time health care analytics applications, particularly the ones that run on mobile devices, such traits (high accuracy and fast prediction) are highly desirable. In this paper, we propose to use an ensemble regression technique based on
CLUB-DRF
, which is a pruned Random Forest that possesses these features. The speed and accuracy of the method have been demonstrated by an experimental study on three medical data sets of three different diseases.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00607-019-00785-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0339-4474</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-485X |
ispartof | Computing, 2020-05, Vol.102 (5), p.1187-1198 |
issn | 0010-485X 1436-5057 |
language | eng |
recordid | cdi_proquest_journals_2395160592 |
source | EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Accuracy Artificial Intelligence Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Data analysis Electronic devices Health care Information Systems Applications (incl.Internet) Mathematical analysis Memory devices Regression analysis Software Engineering |
title | Resource-efficient fast prediction in healthcare data analytics: A pruned Random Forest regression approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resource-efficient%20fast%20prediction%20in%20healthcare%20data%20analytics:%20A%20pruned%20Random%20Forest%20regression%20approach&rft.jtitle=Computing&rft.au=Fawagreh,%20Khaled&rft.date=2020-05-01&rft.volume=102&rft.issue=5&rft.spage=1187&rft.epage=1198&rft.pages=1187-1198&rft.issn=0010-485X&rft.eissn=1436-5057&rft_id=info:doi/10.1007/s00607-019-00785-6&rft_dat=%3Cproquest_cross%3E2395160592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395160592&rft_id=info:pmid/&rfr_iscdi=true |