Translesion DNA Synthesis and Carcinogenesis

Tens of thousands of DNA lesions are formed in mammalian cells each day. DNA translesion synthesis is the main mechanism of cell defense against unrepaired DNA lesions. DNA polymerases iota (Pol ι), eta (Pol η), kappa (Pol κ), and zeta (Pol ζ) have active sites that are less stringent toward the DNA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Moscow) 2020-04, Vol.85 (4), p.425-435
Hauptverfasser: Shilkin, E. S., Boldinova, E. O., Stolyarenko, A. D., Goncharova, R. I., Chuprov-Netochin, R. N., Khairullin, R. F., Smal, M. P., Makarova, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 4
container_start_page 425
container_title Biochemistry (Moscow)
container_volume 85
creator Shilkin, E. S.
Boldinova, E. O.
Stolyarenko, A. D.
Goncharova, R. I.
Chuprov-Netochin, R. N.
Khairullin, R. F.
Smal, M. P.
Makarova, A. V.
description Tens of thousands of DNA lesions are formed in mammalian cells each day. DNA translesion synthesis is the main mechanism of cell defense against unrepaired DNA lesions. DNA polymerases iota (Pol ι), eta (Pol η), kappa (Pol κ), and zeta (Pol ζ) have active sites that are less stringent toward the DNA template structure and efficiently incorporate nucleotides opposite DNA lesions. However, these polymerases display low accuracy of DNA synthesis and can introduce mutations in genomic DNA. Impaired functioning of these enzymes can lead to an increased risk of cancer.
doi_str_mv 10.1134/S0006297920040033
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2395154348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622187763</galeid><sourcerecordid>A622187763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-6f093e21598070d2a0fb75e92d54feb41a6501a57074fe9700b0d3e5b849c7b13</originalsourceid><addsrcrecordid>eNp1UMlOwzAUtBCIlsIHcEGRuJLyvMXxsSqrVMGh5Ww5iVNSNU6xk0P_HkctVAiQD9a8mXnLIHSJYYwxZbdzAEiIFJIAMABKj9AQJ5DGNMBjNOzpuOcH6Mz7VYAEJD1FA0p4IjmHIbpZOG392viqsdHdyySab237HqCPtC2iqXZ5ZZulsX3pHJ2Ueu3Nxf4fobeH-8X0KZ69Pj5PJ7M4Z6lo46QMUwzBXKYgoCAaykxwI0nBWWkyhnXCAWsuQAQsBUAGBTU8S5nMRYbpCF3v-m5c89EZ36pV0zkbRipCJcecUZYeVEu9NqqyZdM6ndeVz9UkIQSnQiQ0qMZ_qMIrTF3ljTVlFeo_DHhnyF3jvTOl2riq1m6rMKg-dvUr9uC52i_cZbUpvh1fOQcB2Ql8oOzSuMNF_3f9BJ_eh4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395154348</pqid></control><display><type>article</type><title>Translesion DNA Synthesis and Carcinogenesis</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shilkin, E. S. ; Boldinova, E. O. ; Stolyarenko, A. D. ; Goncharova, R. I. ; Chuprov-Netochin, R. N. ; Khairullin, R. F. ; Smal, M. P. ; Makarova, A. V.</creator><creatorcontrib>Shilkin, E. S. ; Boldinova, E. O. ; Stolyarenko, A. D. ; Goncharova, R. I. ; Chuprov-Netochin, R. N. ; Khairullin, R. F. ; Smal, M. P. ; Makarova, A. V.</creatorcontrib><description>Tens of thousands of DNA lesions are formed in mammalian cells each day. DNA translesion synthesis is the main mechanism of cell defense against unrepaired DNA lesions. DNA polymerases iota (Pol ι), eta (Pol η), kappa (Pol κ), and zeta (Pol ζ) have active sites that are less stringent toward the DNA template structure and efficiently incorporate nucleotides opposite DNA lesions. However, these polymerases display low accuracy of DNA synthesis and can introduce mutations in genomic DNA. Impaired functioning of these enzymes can lead to an increased risk of cancer.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297920040033</identifier><identifier>PMID: 32569550</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Carcinogenesis ; Carcinogens ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA Damage ; DNA Repair ; DNA Replication ; DNA structure ; DNA synthesis ; DNA-directed DNA polymerase ; DNA-Directed DNA Polymerase - metabolism ; Genetic aspects ; Health risks ; Humans ; Lesions ; Life Sciences ; Mammalian cells ; Methods ; Microbiology ; Mutation ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Nucleotides ; Review</subject><ispartof>Biochemistry (Moscow), 2020-04, Vol.85 (4), p.425-435</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-6f093e21598070d2a0fb75e92d54feb41a6501a57074fe9700b0d3e5b849c7b13</citedby><cites>FETCH-LOGICAL-c487t-6f093e21598070d2a0fb75e92d54feb41a6501a57074fe9700b0d3e5b849c7b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006297920040033$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006297920040033$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32569550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shilkin, E. S.</creatorcontrib><creatorcontrib>Boldinova, E. O.</creatorcontrib><creatorcontrib>Stolyarenko, A. D.</creatorcontrib><creatorcontrib>Goncharova, R. I.</creatorcontrib><creatorcontrib>Chuprov-Netochin, R. N.</creatorcontrib><creatorcontrib>Khairullin, R. F.</creatorcontrib><creatorcontrib>Smal, M. P.</creatorcontrib><creatorcontrib>Makarova, A. V.</creatorcontrib><title>Translesion DNA Synthesis and Carcinogenesis</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>Tens of thousands of DNA lesions are formed in mammalian cells each day. DNA translesion synthesis is the main mechanism of cell defense against unrepaired DNA lesions. DNA polymerases iota (Pol ι), eta (Pol η), kappa (Pol κ), and zeta (Pol ζ) have active sites that are less stringent toward the DNA template structure and efficiently incorporate nucleotides opposite DNA lesions. However, these polymerases display low accuracy of DNA synthesis and can introduce mutations in genomic DNA. Impaired functioning of these enzymes can lead to an increased risk of cancer.</description><subject>Analysis</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Carcinogenesis</subject><subject>Carcinogens</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>DNA Replication</subject><subject>DNA structure</subject><subject>DNA synthesis</subject><subject>DNA-directed DNA polymerase</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Genetic aspects</subject><subject>Health risks</subject><subject>Humans</subject><subject>Lesions</subject><subject>Life Sciences</subject><subject>Mammalian cells</subject><subject>Methods</subject><subject>Microbiology</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Nucleotides</subject><subject>Review</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMlOwzAUtBCIlsIHcEGRuJLyvMXxsSqrVMGh5Ww5iVNSNU6xk0P_HkctVAiQD9a8mXnLIHSJYYwxZbdzAEiIFJIAMABKj9AQJ5DGNMBjNOzpuOcH6Mz7VYAEJD1FA0p4IjmHIbpZOG392viqsdHdyySab237HqCPtC2iqXZ5ZZulsX3pHJ2Ueu3Nxf4fobeH-8X0KZ69Pj5PJ7M4Z6lo46QMUwzBXKYgoCAaykxwI0nBWWkyhnXCAWsuQAQsBUAGBTU8S5nMRYbpCF3v-m5c89EZ36pV0zkbRipCJcecUZYeVEu9NqqyZdM6ndeVz9UkIQSnQiQ0qMZ_qMIrTF3ljTVlFeo_DHhnyF3jvTOl2riq1m6rMKg-dvUr9uC52i_cZbUpvh1fOQcB2Ql8oOzSuMNF_3f9BJ_eh4Q</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Shilkin, E. S.</creator><creator>Boldinova, E. O.</creator><creator>Stolyarenko, A. D.</creator><creator>Goncharova, R. I.</creator><creator>Chuprov-Netochin, R. N.</creator><creator>Khairullin, R. F.</creator><creator>Smal, M. P.</creator><creator>Makarova, A. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20200401</creationdate><title>Translesion DNA Synthesis and Carcinogenesis</title><author>Shilkin, E. S. ; Boldinova, E. O. ; Stolyarenko, A. D. ; Goncharova, R. I. ; Chuprov-Netochin, R. N. ; Khairullin, R. F. ; Smal, M. P. ; Makarova, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-6f093e21598070d2a0fb75e92d54feb41a6501a57074fe9700b0d3e5b849c7b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Carcinogenesis</topic><topic>Carcinogens</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>DNA Replication</topic><topic>DNA structure</topic><topic>DNA synthesis</topic><topic>DNA-directed DNA polymerase</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Genetic aspects</topic><topic>Health risks</topic><topic>Humans</topic><topic>Lesions</topic><topic>Life Sciences</topic><topic>Mammalian cells</topic><topic>Methods</topic><topic>Microbiology</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Nucleotides</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shilkin, E. S.</creatorcontrib><creatorcontrib>Boldinova, E. O.</creatorcontrib><creatorcontrib>Stolyarenko, A. D.</creatorcontrib><creatorcontrib>Goncharova, R. I.</creatorcontrib><creatorcontrib>Chuprov-Netochin, R. N.</creatorcontrib><creatorcontrib>Khairullin, R. F.</creatorcontrib><creatorcontrib>Smal, M. P.</creatorcontrib><creatorcontrib>Makarova, A. V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shilkin, E. S.</au><au>Boldinova, E. O.</au><au>Stolyarenko, A. D.</au><au>Goncharova, R. I.</au><au>Chuprov-Netochin, R. N.</au><au>Khairullin, R. F.</au><au>Smal, M. P.</au><au>Makarova, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translesion DNA Synthesis and Carcinogenesis</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>85</volume><issue>4</issue><spage>425</spage><epage>435</epage><pages>425-435</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>Tens of thousands of DNA lesions are formed in mammalian cells each day. DNA translesion synthesis is the main mechanism of cell defense against unrepaired DNA lesions. DNA polymerases iota (Pol ι), eta (Pol η), kappa (Pol κ), and zeta (Pol ζ) have active sites that are less stringent toward the DNA template structure and efficiently incorporate nucleotides opposite DNA lesions. However, these polymerases display low accuracy of DNA synthesis and can introduce mutations in genomic DNA. Impaired functioning of these enzymes can lead to an increased risk of cancer.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><pmid>32569550</pmid><doi>10.1134/S0006297920040033</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2979
ispartof Biochemistry (Moscow), 2020-04, Vol.85 (4), p.425-435
issn 0006-2979
1608-3040
language eng
recordid cdi_proquest_journals_2395154348
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Analysis
Animals
Biochemistry
Biomedical and Life Sciences
Biomedicine
Bioorganic Chemistry
Carcinogenesis
Carcinogens
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA Damage
DNA Repair
DNA Replication
DNA structure
DNA synthesis
DNA-directed DNA polymerase
DNA-Directed DNA Polymerase - metabolism
Genetic aspects
Health risks
Humans
Lesions
Life Sciences
Mammalian cells
Methods
Microbiology
Mutation
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - pathology
Nucleotides
Review
title Translesion DNA Synthesis and Carcinogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translesion%20DNA%20Synthesis%20and%20Carcinogenesis&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Shilkin,%20E.%20S.&rft.date=2020-04-01&rft.volume=85&rft.issue=4&rft.spage=425&rft.epage=435&rft.pages=425-435&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297920040033&rft_dat=%3Cgale_proqu%3EA622187763%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395154348&rft_id=info:pmid/32569550&rft_galeid=A622187763&rfr_iscdi=true